\qquad

Geometry Cumulative Study Guide

Date: \qquad

Test 10

Numeric Response

1. Find the geometric mean of 3 and 12 .
2. Determine the slope of the line passing through $(6,5)$ and $(5,-3)$.
3. Find the perimeter, in feet, of the composite figure below.

4. Solve the proportion $\frac{3}{12}=\frac{x}{4}$ to find the value of x.
5. Find the length of x in the diagram below.

Problem

6. The measure of $\overparen{A B}$ is given by the expression $6 x-17$, and the measure of $\overparen{X Y}$ is given by the expression
$4 x+11$. It is given that $\overparen{A B} \cong \overparen{X Y}$. Determine the value of x and the measure of each arc.
7. What is the included side of $\angle J$ and $\angle K$ in the triangle below? What is the included angle of $\overline{J L}$ and $\overline{K L}$?

8. Find the area of sector $A O B$ with radius 12 feet and $\overline{\mathrm{m} A O B}=280^{\circ}$. Give your answer in terms of π.
9. Are the lines $y=\frac{2}{3} x-7$ and $y=-5+\frac{5}{9} x$ parallel, perpendicular, or neither?
10. Find the range of values for x in the triangle below.

11. Draw a net for a triangular prism.
12. A school provides bus service only to students who live a distance greater than 2 miles away from the school. On a coordinate plane, the school is located at the origin, and Michael lives at the closest point to the school on Maple Street, which can be represented by the line $y=5 x-4$. If each unit on the coordinate plane represents 1 mile, does Michael live far enough from the school for bus service?
13. Given that $\triangle A B C \sim \triangle Q R S$, prove algebraically that the ratio of their perimeters is $1: 4$ if the ratio of their corresponding sides is $1: 4$.
14. Assign coordinates to the vertices of isosceles triangle $P Q R$ with a height of 2 from the base to the vertex.
15. Show that the two triangles below are similar if $\overline{V W} \| \overline{Y Z}$. Then find $Y Z$.

16. Name the inscribed angle shown in the circle below

17. Write an indirect proof to prove Theorem 4-2: If there is a line and a point not on the line, then exactly one plane contains them.
18. Classify the three-dimensional solid shown below.

Geometry Cumulative Study Guide Test 10 Answer Section

NUMERIC RESPONSE

1. ANS: 6

PTS: 1
Geometric Mean
REF: Lesson 50:

TOP: Cumulative Test 10
2. ANS: 8

PTS: 1
REF: Lesson 16: Finding
Slopes and Equations of Lines
NAT: NCTM A. 4 TOP: Cumulative Test 10
3. ANS: 29

PTS: 1 REF: Lesson 40: Finding
Perimeters and Areas of Composite Figures
NAT: NCTM G.1a TOP: Cumulative Test 10
4. ANS: 1

PTS: 1
REF: Lesson 41: Ratios
Proportions, and Similarity
NAT: NCTM A.2b TOP: Cumulative Test 10
5. ANS: 3

PTS: 1
REF: Lesson 43: Chords,
Secants, and Tangents
NAT: NCTM G.1d TOP: Cumulative Test 10

PROBLEM

6. ANS:
$x=14 ; \mathfrak{m} \overparen{A B}=67^{\circ} ; \mathrm{m} \overparen{X Y}=67^{\circ}$
PTS: 1
REF: Lesson 26: Central
Angles and Arc Measure
NAT: NCTM G.4d TOP: Cumulative Test 10
7. ANS:
$\overline{J K} ; \angle L$
PTS: 1
REF: Lesson 28: Triangle

Congruence: SAS
NAT: NCTM G.1a TOP: Cumulative Test 10
8. ANS:
$x=\sqrt{ } 410$; No, because Pythagorean triples must be whole numbers.

PTS: 1 REF: Lesson 29: Using the
Pythagorean Theorem
NAT: NCTM G.1d TOP: Cumulative Test 10 9.
$2 \sqrt{2}$

PTS: 1
REF: Lesson 33: Converse
of the Pythagorean Theorem
NAT: NFSE
10. ANS:
112π square feet
PTS: 1 REF: Lesson 35: Finding
Arc Lenathe andedreasof seabbes
NAT: NCTM M.2b
TOP: Cumula
MSC: Geom_S04_00081
11. ANS:

Neither
MSC: Geom_S05_00055
PTS: $1 \quad$ REF: Lesson 37: Writing Equations of Parallel and Perpendicular Lines NAT: NCTM A. 4 TOP: Cumulative Test 10
12. ANS:
$5<x<111$ JC: Geom_S05_00061
PTS: 1
REF: Lesson 39:
Inequalities in a Triangle
NAT: NCTM G.1a TOP: Cumulative Test 10
13. ANS:

Sample:

MSC: Geom_S03_00091

| $\triangle Q R S=4$ (perimeter of $\triangle A B C$) \quad Substitute |
| :--- | :--- |

Therefore, the ratio of the perimeter of $\triangle A B C$ to the perimeter of $\triangle Q R S$ is $1: 4$.
$\begin{array}{ll}\text { PTS: } 1 & \text { REF: Lesson 44: Applying } \\ \text { Similarity } & \text { NAT: NCTM RP.1c }\end{array}$
TOP: Cumulative Test 10
MSC: Geom_
16. ANS:

Sample:

PTS: 1
REF: Investigation 5: Nets
TOP: Cumulative Test 10
14. ANS:
$d \approx 0.78$ miles, which is less than 2 miles, so Michael does not live far enough from the school for the bus service.

PTS: 1
REF: Lesson 42: Finding
Distance from a Point to a Line
NAT: NCTM G.1d TOP: Cumulative Test 10
15. ANS:

Statements	Reasons
$1 . \triangle A B C \sim \triangle Q R S$	1. Given
2. $\frac{A B}{Q R}=\frac{B C}{R S}=\frac{C A}{S Q}=\frac{1}{4}$	2. Given
$3.4 A B=Q R$	3. Cross
	multiply.
$4.4 B C=R S$	4. Cross
	multiply.
5. $4 C A=S Q$	5. Cross
6. perimeter of	multiply.
$\triangle Q R S=Q R+R S+S Q$	6. Definition
7. perimeter of	of Perimeter
$\triangle Q R S=4 A B+4 B C+4 C A$	7. Substitute
8. perimeter of	
$\triangle Q R S=4(A B+B C+C A)$	8. Simplify
9. perimeter of	9. Definition
$\triangle A B C=A B+B C+C A$	of Perimeter
10. perimeter of	10.

PTS: 1
REF: Lesson 45:
Introduction to Coordinate Proofs
NAT: NCTM G.2b TOP: Cumulative Test 10
17. ANS:

First, show that the triangles are similar.

1. $\overline{V W} \| \overline{Y Z}$
2. Given
3. $\mathrm{m} \angle V W X=\mathrm{m} \angle Y Z X$
4. Corresponding angles
5. $\mathrm{m} \angle W V X=\mathrm{m} \angle Z Y X$
6. Corresponding angles
7. $\triangle V W X \sim \triangle Y Z X$
8. AA Similarity
Postulate
$Y Z=4$
Since the triangles are similar, the ratios of the lengths of the corresponding sides are equal.

$$
\begin{aligned}
& V W: Y Z=W X: Z X \\
& \frac{V W}{Y Z}=\frac{W X}{Z X} ; \frac{2}{Y Z}=\frac{5}{10} ; 5(Y Z)=20 ; Y Z=4 .
\end{aligned}
$$

PTS: 1 REF: Lesson 46: Triangle Similarity: AA, SSS, SAS
NAT: NCTM G.1b TOP: Cumulative Test 10
MSC: Geom_S05_00088
18. ANS:
$\angle M N O$
PTS: 1
REF: Lesson 47: Circles
and Inscribed Angles
NAT: NCTM G.1a TOP: Cumulative Test 10 MSC: Geom_S05_00091
19. ANS:

Suppose that line $A B$ does not contain point C.
Assume that line $A B$ and point C cannot be contained by exactly one plane. Since points A, B, and C are noncollinear, this contradicts Postulate
6 , which states that through any three noncollinear points there exists exactly one plane. The assumption is contradicted and Theorem 4-2 must be true.

PTS: 1 REF: Lesson 48: Indirect
Proofs NAT: NCTM RP.1c
TOP: Cumulative Test $10 \quad$ MSC: Geom_S05_00093
20. ANS:

Cone
PTS: 1 REF: Lesson 49:
Introduction to Solids NAT: NCTM G.1a
TOP: Cumulative Test 10 MSC: Geom_S05_00095

