Geometry Cumulative Study Guide Test 10

Numeric Response

1. Find the geometric mean of 3 and 12.

2. Determine the slope of the line passing through (6, 5) and (5, -3).

3. Find the perimeter, in feet, of the composite figure below.

- 4. Solve the proportion $\frac{3}{12} = \frac{x}{4}$ to find the value of x.
- 5. Find the length of x in the diagram below.

Problem

6. The measure of \widehat{AB} is given by the expression 6x - 17, and the measure of \widehat{XY} is given by the expression 4x + 11. It is given that $\widehat{AB} \cong \widehat{XY}$. Determine the value of x and the measure of each arc.

7. What is the included side of $\angle J$ and $\angle K$ in the triangle below? What is the included angle of \overline{JL} and \overline{KL} ?

8. Find the unknown length *x* in the triangle below. Do the side lengths form a Pythagorean triple?

9. Find the value of x in the diagram below. Write your answer in simplified radical form.

10. Find the area of sector *AOB* with radius 12 feet and $\widehat{\text{mAOB}} = 280^\circ$. Give your answer in terms of π .

11. Are the lines $y = \frac{2}{3}x - 7$ and $y = -5 + \frac{5}{9}x$ parallel, perpendicular, or neither?

12. Find the range of values for x in the triangle below.

13. Draw a net for a triangular prism.

14. A school provides bus service only to students who live a distance greater than 2 miles away from the school. On a coordinate plane, the school is located at the origin, and Michael lives at the closest point to the school on Maple Street, which can be represented by the line y = 5x - 4. If each unit on the coordinate plane represents 1 mile, does Michael live far enough from the school for bus service?

15. Given that $\triangle ABC \sim \triangle QRS$, prove algebraically that the ratio of their perimeters is 1 : 4 if the ratio of their corresponding sides is 1 : 4.

16. Assign coordinates to the vertices of isosceles triangle PQR with a height of 2 from the base to the vertex.

17. Show that the two triangles below are similar if $\overline{VW} \parallel \overline{YZ}$. Then find *YZ*.

18. Name the inscribed angle shown in the circle below

19. Write an indirect proof to prove Theorem 4-2: If there is a line and a point not on the line, then exactly one plane contains them.

20. Classify the three-dimensional solid shown below.

Geometry Cumulative Study Guide Test 10 Answer Section

NUMERIC RESPONSE

- 1. ANS: 6
 - PTS:1REF:Lesson 50:Geometric MeanNAT:NCTM G.4d9TOP:Cumulative Test 10MSC:Geometric
- 2. ANS: 8

PTS: 1 REF: Lesson 16: Finding Slopes and Equations of Lines NAT: NCTM A.4 TOP: Cumulative Test 10
3. ANS: 29

PTS: 1 REF: Lesson 40: Finding Perimeters and Areas of Composite Figures NAT: NCTM G.1a TOP: Cumulative Test 10

4. ANS: 1

PTS: 1 REF: Lesson 41: Ratios, Proportions, and Similarity NAT: NCTM A.2b TOP: Cumulative Test 10 5. ANS: 3

PTS: 1 REF: Lesson 43: Chords, Secants, and Tangents NAT: NCTM G.1d TOP: Cumulative Test 10

PROBLEM

6. ANS: $x = 14; \text{ m}\widehat{AB} = 67^\circ; \text{ m}\widehat{XY} = 67^\circ$ PTS: 1 REF: Lesson 26: Central

Angles and Arc Measure NAT: NCTM G.4d TOP: Cumulative Test 10 7. $ANS: \frac{JK}{JK}$; $\angle L$

PTS: 1 REF: Lesson 28: Triangle

Congruence: SAS NAT: NCTM G.1a TOP: Cumulative Test 10

8. ANS: $x = \sqrt{410}$; No, because Pythagorean triples must be whole numbers.

PTS: 1 REF: Lesson 29: Using the Pythagorean Theorem NAT: NCTM G.1d TOP: Cumulative Test 10 ANS: n SUS 00067

PTS: 1 REF: Lesson 33: Converse of the Pythagorean Theorem NAT: NSEM Geld SOP 006 penulative Test 10 10. ANS:

 112π square feet

PTS: 1 REF: Lesson 35: Finding Arc Lengthe and Area of Sports NAT: NCTM M.2b TOP: Cumula MSC: Geom_S04_00081

- ANS: Neither
 MSC: Geom_S05_00055
 PTS: 1 REF: Lesson 37: Writing Equations of Parallel and Perpendicular Lines NAT: NCTM A.4 TOP: Cumulative Test 10
- 12. ANS: $5 < x < 11_{3}$ C: Geom_S05_00061

PTS: 1 REF: Lesson 39: Inequalities in a Triangle NAT: NCTM G.1a TOP: Cumulative Test 10 13. ANS:

MSC: Geom_S03_00091

Sample:

 $\triangle QRS = 4$ (perimeter of $\triangle ABC$) Substitute

Therefore, the ratio of the perimeter of $\triangle ABC$ to the perimeter of $\triangle QRS$ is 1 : 4.

PTS: 1	REF:	Lesson 44: Applying
Similarity	NAT:	NCTM RP.1c
TOP: Cumulati	ive Test 10	MSC: Geom

16. ANS:

PTS: 1 REF: Lesson 45: Introduction to Coordinate Proofs NAT: NCTM G.2b TOP: Cumulative Test 10 17. ANS:

First, show that the triangles are similar.

1. $\overline{VW} \parallel \overline{YZ}$	1. Given
2. $m \angle VWX = m \angle YZX$	2. Corresponding angles
3. m $\angle WVX = m \angle ZYX$	3. Corresponding angles
$A \wedge V W V \dots \wedge V \nabla V$	4. AA Similarity
4. 🛆 V WA ~ 🖓 I LA	Postulate

YZ = 4

Since the triangles are similar, the ratios of the lengths of the corresponding sides are equal.

$$VW: YZ = WX: ZX$$

 $\frac{VW}{YZ} = \frac{WX}{ZX}; \frac{2}{YZ} = \frac{5}{10}; 5(YZ) = 20; YZ = 4.$

PTS:1REF:Investigation 5: NetsTOP:Cumulative Test 10MSC:

14. ANS:

 $d \approx 0.78$ miles, which is less than 2 miles, so Michael does not live far enough from the school for the bus service.

PTS: 1 REF: Lesson 42: Finding Distance from a Point to a Line NAT: NCTM G.1d TOP: Cumulative Test 10

15. ANS:

Statements	Reasons
1. $\triangle ABC \sim \triangle QRS$	1. Given
2. $\frac{AB}{QR} = \frac{BC}{RS} = \frac{CA}{SQ} = \frac{1}{4}$	2. Given
3.4AB = QR	3. Cross multiply.
4. 4 <i>BC</i> = <i>RS</i>	4. Cross multiply.
5.4CA = SQ	5. Cross multiply.
6. perimeter of	6. Definition
$\triangle QRS = QR + RS + SQ$	of Perimeter
7. perimeter of $\triangle QRS = 4AB + 4BC + 4CA$	7. Substitute
8. perimeter of $\triangle QRS = 4(AB + BC + CA)$	8. Simplify
9. perimeter of	9. Definition
$\triangle ABC = AB + BC + CA$	of Perimeter
10. perimeter of	10.

PTS: 1 REF: Lesson 46: Triangle Similarity: AA, SSS, SAS NAT: NCTM G.1b TOP: Cumulative Test 10 MSC: Geom_S05_00088 18. ANS: ∠MNO PTS: 1 REF: Lesson 47: Circles and Inscribed Angles NAT: NCTM G.1a TOP: Cumulative Test 10 MSC: Geom_S05_00091 19. ANS: Suppose that line *AB* does not contain point *C*. Assume that line AB and point C cannot be contained by exactly one plane. Since points A, B, and C are noncollinear, this contradicts Postulate 6, which states that through any three noncollinear points there exists exactly one plane. The assumption is contradicted and Theorem 4-2 must be true. PTS: 1 REF: Lesson 48: Indirect Proofs NAT: NCTM RP.1c TOP: Cumulative Test 10 MSC: Geom_S05_00093 20. ANS: Cone PTS: 1 REF: Lesson 49: Introduction to Solids NAT: NCTM G.1a TOP: Cumulative Test 10 MSC: Geom_S05_00095

5