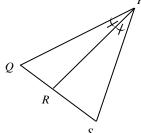
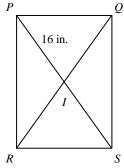

Geometry Cumulative Study Guide Test 11


Numeric Response

1. How many faces does a polyhedron with 14 vertices and 18 edges have?

2. Find the area of the trapezoid below in square centimeters.

3. Using the diagram below, find QR if PS = 18, RS = 9, and PQ = 20.

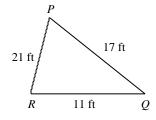

4. Find the distance from point P(-8, 1) to the line y = 5.

5.A landscape architect is designing a garden in the shape of a regular hexagon. The side length of the garden measures 8 inches on a blueprint with the scale 1 inch: 10 feet. How many feet of fencing will be needed to surround the garden?

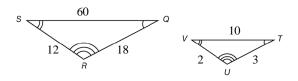
6.A triangle is equiangular and has a perimeter of 27 inches. Determine the length of each side in inches.

Name:	
Date:	
Period:	

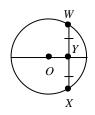
7.A rectangular frame is P divided by diagonal edges as shown below. If *PI* is 16 inches long, what is the length of \overline{QR} in inches?



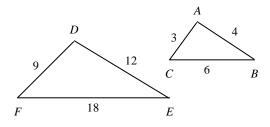
Problem


8.A movie theater sells tickets for children, adults, and senior citizens. The theater gives discounts on all children and senior citizen tickets. Consider the statements "a customer is a senior citizen" and "a customer gets a discount." What is the conjunction of these statements? Use a truth table to assess its truth.

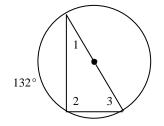
9. Find the arc length of \widehat{XY} in the circle with radius 6 centimeters and $\widehat{mXY} = 120^{\circ}$. Give your answer in terms of π .


10.Order the measures of the angles in triangle *PQR* from least to greatest.

11. Write the ratio comparing *VU* to *SR* in three different ways, in simplest form.

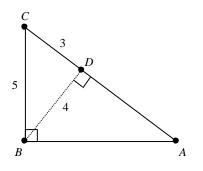


12. Find $m \angle OYX$ in the diagram below.



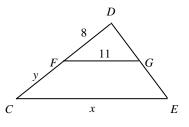
13.Triangle *ABC* has vertices A(2, 0), B(8, 0), and C(5, 5). Use a coordinate proof to show that triangle *ABC* is an isosceles triangle.

14. Given the two triangles with values as shown below, show that they are similar triangles.


15. Find the measure of $\angle 1$, $\angle 2$, and $\angle 3$ in the diagram below.

16.Write an indirect proof to prove Theorem 39-2: If one angle of a triangle is larger than another angle, then the side opposite the first angle is longer than the side opposite the second angle.

Given: For $\triangle ABC$, m $\angle A > m \angle C$ Prove: BC > BA


17.Find AD and AB in the diagram below.

18. Find the exact length of a hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle if one leg measures 7 centimeters.

19.Draw a pentagonal prism in one point perspective. Use a pencil with an eraser.

20.In the diagram below, \overline{FG} is a midsegment of triangle *CDE*. Find the values of x and y.

Geometry Cumulative Study Guide Test 11 Answer Section

NUMERIC RESPONSE

1. A	NS:	6	
TOP: Cumulative Test			
NAT: NCTM M.2b MSC: Geom_S03_0000		Lesson 22: Finding Areas of Quadril TOP: Cumulative Te	
NAT: NCTM G.1d T		Lesson 38: Perpendicular and Angle Cumulative Test 11 4	
NAT: NCTM G.1d T		Lesson 42: Finding Distance from a E Cumulative Test 11 480	
TOP: Cumulative Test		Lesson 44: Applying Similarity MSC: Geom_S05_00 9	
NAT: NCTM G.1a T		Lesson 51: Properties of Isosceles an Cumulative Test 11 32	
PTS: 1 R NAT: NCTM G.1d T		Lesson 52: Properties of Rectangles, Cumulative Test 11	Rhombuses, and Squares MSC: Geom_S06_00056

PROBLEM

8. ANS: A customer is a senior citizen *and* gets a discount; true

Statement p	Statement q	Conjunction
		p and q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

The conjunction is true, because the theater gives discounts (q is true) to senior citizens (p is true).

PTS: 1 REF: Lesson 20: Interpreting Truth Tables TOP: Cumulative Test 11 NAT: NCTM RP.1d MSC: Geom_S02_00117 9. ANS: 4π centimeters PTS: 1 REF: Lesson 35: Finding Arc Lengths and Areas of Sectors NAT: NCTM G.1a TOP: Cumulative Test 11 MSC: Geom S04 00082 ANS: 10. ZP, ZR, ZQ PTS: 1 REF: Lesson 39: Inequalities in a Triangle NAT: NCTM G.1a TOP: Cumulative Test 11 MSC: Geom_S04_00096 ANS: 11. 1 to 6; 1 : 6; $\frac{1}{6}$ PTS: 1 REF: Lesson 41: Ratios, Proportions, and Similarity NAT: NCTM G.1b TOP: Cumulative Test 11 MSC: Geom_S05_00073 12. ANS: $m \angle OYX = 90^{\circ}$ PTS: 1 REF: Lesson 43: Chords, Secants, and Tangents MSC: Geom_S05_00078 NAT: NCTM G.1d TOP: Cumulative Test 11 13. ANS:

By the definition of an isosceles triangle, two of its sides have equal length. To verify that $\triangle ABC$ is an isosceles triangle, calculate each of the side lengths.

 $CB = \sqrt{(5-8)^2 + (5-0)^2} = \sqrt{34} \approx 5.8$ $AC = \sqrt{(2-5)^2 + (0-5)^2} = \sqrt{34} \approx 5.8$ $AB = \sqrt{(2-8)^2 + (0-0)^2} = \sqrt{36} = 6$

Since \overline{CB} and \overline{AC} are the same length, $\triangle ABC$ is an isosceles triangle.

PTS: 1	REF: Lesson 45: Introduction to Coordinate Proofs
NAT: NCTM RP.1c	TOP: Cumulative Test 11
MSC: Geom_S05_00	0086
14.	ANS:
1. $\frac{AC}{DF} = \frac{3}{9} = \frac{1}{3}$	1. Similarity ratio for $AC: DF$
2. $\frac{AB}{DE} = \frac{4}{12} = \frac{1}{3}$	2. Similarity ratio for <i>AB</i> : <i>DE</i>
3. $\frac{CB}{FE} = \frac{6}{18} = \frac{1}{3}$	3. Similarity ratio for <i>CB</i> : <i>FE</i>
4. $\triangle ACB \sim \triangle DFE$	4.SSS Similarity Theorem

PTS: 1 REF: Lesson 46: Triangle Similarity: AA, SSS, SAS NAT: NCTM G.1b TOP: Cumulative Test 11 MSC: Geom_S05_00089 15. ANS: $m \angle 1 = 24^{\circ}; m \angle 2 = 90^{\circ}; m \angle 3 = 66^{\circ}$
PTS: 1 REF: Lesson 47: Circles and Inscribed Angles NAT: NCTM G.1d TOP: Cumulative Test 11 MSC: Geom_S05_00092 16. ANS: Assume that $BC \leq BA$. Case 1: If $BC < BA$, then $m \angle C > m \angle A$, because if one side is longer than another side, then the angle opposite the longer side is larger. This contradicts given information, so BC is not less than BA . Case 2: If $BC = BA$, then $m \angle A = m \angle C$ by the Isosceles Triangle Theorem. This contradicts given information, so BC is not equal to BA . Therefore, $BC > BA$.
PTS: 1 REF: Lesson 48: Indirect Proofs NAT: NCTM RP.1c TOP: Cumulative Test 11 MSC: Geom_S05_00094 17. ANS: AD = 5.3, AB = 6.6
PTS: 1 REF: Lesson 50: Geometric Mean NAT: NCTM G.1d TOP: Cumulative Test 11 MSC: Geom_S05_00097 18. ANS: $7\sqrt{2}$ centimeters
PTS: 1 REF: Lesson 53: 45°-45°-90° Right Triangles NAT: NCTM G.1d TOP: Cumulative Test 11 MSC: Geom_S06_00077 19. ANS: Sample:
PTS: 1 REF: Lesson 54: Representing Solids NAT: NCTM G.4a TOP: Cumulative Test 11 MSC: Geom_S06_00078 20. ANS: x = 22, y = 8
PTS: 1 NAT: NCTM G.1dREF: Lesson 55: Triangle Midsegment Theorem TOP: Cumulative Test 11MSC: Geom_S06_00080st 10MSC: Geom_S05_00095