\qquad

Geometry Cumulative Study Guide

Date: \qquad

Test 7

Numeric Response

1.Determine the area of $\triangle X Y Z$ in square centimeters.

2. Find the area, in square inches, of a circle with a radius of 6 inches. Use 3.14 for π.
3.In $\triangle R S T, S C=24$. Find $C X$.

Problem

4. Determine the midpoint of the line segment with endpoints $(4,2)$ and $(5,-4)$.
5. Consider the following conjecture.

If the product of two numbers is negative, then both numbers are negative.

What is the hypothesis of the conjecture? What is its conclusion? Find a counterexample to the conjecture.
6. Determine whether polygon $A F G D$ is convex or concave. Explain.

7. Determine the contrapositive of the statement below. If an angle is acute, its measure is less than 90°.
8. For $\triangle A B C$, determine the measure of $\angle A C D$.

9. For the following statements, use the Law of Detachment to write a valid concluding statement.

If a triangle is obtuse, then it contains one obtuse angle.
$\triangle F G H$ is obtuse.
10.Find the area of a parallelogram with a height of $8 y$ and a base of $3 x$.
11.The area of a rectangular photograph is 40 square inches. The photograph's length is $(4 x+4)$ inches, and the photograph's width is $5 x$ inches. Find the dimensions of the photograph. Provide a justification for each step.
12. What is $\overparen{m C D}$?

13. Prove Theorem 5-4: If two lines are perpendicular, then they form congruent adjacent angles.

Given: $\overline{A B} \perp \overline{C D}$

$\angle 1$ and $\angle 2$ form a linear pair
Prove: $\quad \angle 1 \cong \angle 2$
14.Determine whether the pair of triangles is congruent by the SAS Postulate.

15.Find the unknown length in the triangle below. Do the side lengths form a Pythagorean triple?

16. Use ASA congruence to determine the measures of the sides of $\triangle X Y Z$.
17.Use the given flowchart to write a twocolumn proof.

Given: $\angle 1$ and $\angle 2$ are complementary. $\angle 2$ and $\angle 3$ are complementary.

Prove: $\quad \angle 1 \cong \angle 3$

18. Find the value of x in the triangle below. Write your answer in simplified radical form.

19. A banner is shaped like a parallelogram with a diagonal of 3 feet, as shown. Calculate the values of x and y to the nearest hundredth.

20. Find the arc length L of a circle with a radius of 6 feet and an arc measure of 120°. Give the answer in terms of π.

Geometry Cumulative Study Guide Test 7 Answer Section

NUMERIC RESPONSE

1. ANS: 7.5

PTS: 1
REF: Lesson 13: Introduction to Triangles
NAT: NCTM M.2b TOP:
Cumulative Test 7
MSC: Geom_S02_00073
2. ANS: 113.04

PTS: 1 REF: Lesson 23: Introduction to Circles NAT: NCTM M.2b
TOP: Cumulative Test 7
Geom_S03_00064
3. ANS: 8

PTS: 1
REF: Lesson 32: Altitudes and Medians of Triangles
NAT: NCTM G.1d TOP: Cumulative Test 7

PROBLEM

4. ANS:
$(4.5,-1)$
PTS: 1
REF: Lesson 11: Finding
Midpoints
NAT: NCTM G.1d
TOP: Cumulative Test 7
Geom_S02_00080
5. ANS:

Hypothesis: The product of two numbers is negative.
Conclusion: Both numbers are negative.
Sample counterexample: (2)(-3)=-6
PTS: 1
REF: Lesson 14: Disproving
Conjectures with Counterexamples
NAT: NCTM RP.1b
TOP:
Cumulative Test 7
MSC: Geom_S02_00092
6. ANS:

Concave.
$\overline{F D}$ contains points in the exterior of the polygon.
PTS: 1
REF: Lesson 15: Introduction
to Polygons
NAT: NCTM G.1a TOP: Cumulative Test 7
7. ANS:

If an angle's measure is not less than 90°, then it is not acute.
PTS: 1
REF: Lesson 17: More
Conditional Statements
NAT: NCTM RP.1c
TOP:
Cumulative Test 7
MSC: Geom_S02_00101
8. ANS:
115°
PTS: 1
REF: Lesson 18: Triangle
Theorems NAT: NCTM G.1d
TOP: Cumulative Test 7 MSC: Geom_S02_00108
9. ANS

Therefore, $\triangle \hat{F G H}$ contains one obtuse angle.
PTS: 1
REF: Lesson 21: Laws of
Detachment and Syllogism
NAT: NCTM RP.1b
TOP:
Cumulative Test 7
MSC: Geom_S03_00074
10. ANS:
$24 x y$
PTS: 1 REF: Lesson 22: Finding
Areas of Quadrilaterals
NAT: NCTM M.2b
TOP:
Cumulative Test 7
MSC: Geom_S03_00077
11. ANS:

The formula for the area of a rectangle is $A=l w$, so $A=40, l=(4 x+4)$, and $w=5 x$.

$$
\begin{array}{ll}
A=40 & \text { Given } \\
l=(4 x+4) & \text { Given } \\
w=5 x & \text { Given }
\end{array}
$$

$\qquad A=l w$	Area formula for a rectangle
$40=(4 x+4)(5 x)$	Substitution Property of $40=20 x^{2}+20 x$
Equality	Distributive Property
$20 x^{2}+20 x=40$	Symmetric Property of
$\frac{20 x^{2}+20 x}{20}=\frac{40}{20}$	Equality
Division Property of	
$x^{2}+x=2$	Equality
$x^{2}+x-2=2-2$	Simplify
$x^{2}+x-2=0$	Subtraction Property of
$(x+2)(x-1)=0$	Equality
Simplify	
Factor	

There are two solutions to this factorization, $x=-2$ and $x=1$. However, $x=-2$ gives a negative length, so it is thrown out. Therefore,

$x-1$	$=0$		Given
$x-1+1$	$=0+1$		Addition Property of
x	$=1$		Equality
x		Simplify	

Substitute $x=1$ into the expressions for length and width of the rectangle to find the dimensions.

$$
\begin{aligned}
\text { length } & =(4 x+4) \text { inches } \\
& =(4(1)+4) \text { inches } \\
& =8 \text { inches } \\
\text { width } & =5 x \text { inches } \\
& =5(1) \text { inches } \\
& =5 \text { inches }
\end{aligned}
$$

Therefore, the photograph is 8 inches long and 5 inches wide.

PTS: 1
REF: Lesson 24: Algebraic
Proofs NAT: NCTM G.1a
TOP: Cumulative Test 7
MSC:
Geom_S03_00082
12. ANS:
150°
PTS: 1
REF: Lesson 26: Central
Angles and Arc Measure
NAT: NCTM G.1a TOP: Cumulative Test 7
13. ANS:

Statements	Reasons

1. $\overline{A B} \perp \overline{C D}$	1. Given
2. $\angle 1$ is a right angle	2. Definition of perpendicular lines 3. Definition of a right angle 3. $\mathrm{m} \angle 1=90^{\circ}$
4. $\angle 1$ and $\angle 2$ form a linear pair	
5. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$	5. Linear Pair Theorem 6. Substitution Property of Equality 7. $90^{\circ}+\mathrm{m} \angle 2=180^{\circ}$ Pubtraction Property of Equality
$7.90^{\circ}+\mathrm{m} \angle 2-90^{\circ}=180^{\circ}-90^{\circ}$	
$8 . \mathrm{m} \angle 2=90^{\circ}$	8. Simplify 9. Substitution Property of Equality 10. Definition of congruent angles 11. Symmetric Property of Congruence
$10 . \angle 2 \cong \angle 1$	
$11 . \angle 1 \cong \angle 2$	

PTS: 1
REF: Lesson 27: Two-
Column Proofs
NAT: NCTM G.1c
TOP: Cumulative Test 7 MSC:
Geom_S03_00093
14. ANS:

The triangles cannot be proven congruent by the SAS Postulate
PTS: 1
REF: Lesson 28: Triangle
Congruence: SAS
NAT: NCTM G.1b TOP: Cumulative Test 7
15. ANS:
$x=\sqrt{ } 370$
No, the side lengths do not form a Pythagorean Triple.
PTS: 1
REF: Lesson 29: Using the
Pythagorean Theorem
NAT: NCTM G.1d TOP: Cumulative Test 7
16. ANS MSC : Geom S03 00090
$X Y=9 ; X Z=13 ; Y Z=5$

PTS: 1
REF: Lesson 30: Triangle
Congruence: ASA and AAS
NAT: NCTM G.1b TOP: Cumulative Test 7
17. ANS:

Statements	Reasons
$1 . \angle 1$ and $\angle 2$ are complementary.	1. Given
2. $\angle 2$ and $\angle 3$ are complementary.	2. Given
3. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$	3. Definition of
	complementary
angles	
$4 . \mathrm{m} \angle 2+\mathrm{m} \angle 3=90^{\circ}$	4. Definition of
complementary	
angles	
5.	5. Subtraction
$\mathrm{m} \angle 1+\mathrm{m} \angle 2-\mathrm{m} \angle 2=90^{\circ}-\mathrm{m} \angle 2$	Property of
	Equality
6.	6. Subtraction
$\mathrm{m} \angle 2+\mathrm{m} \angle 3-\mathrm{m} \angle 2=90^{\circ}-\mathrm{m} \angle 2$	Property of
	Equality
$7 . \mathrm{m} \angle 1=90^{\circ}-\mathrm{m} \angle 2$	7. Simplify
$8 . \mathrm{m} \angle 3=90^{\circ}-\mathrm{m} \angle 2$	8. Simplify
$9 . \mathrm{m} \angle 1=\mathrm{m} \angle 3$	9. Substitution
	Property of
$10 . \angle 1 \cong \angle 3$	Equality
	10. Definition of
congruent angles	

PTS: 1
REF: Lesson 31: Flowchart
and Paragraph Proofs
NAT: NCTM RP.1d
TOP:
Cumulative Test 7
MSC: Geom_S04_00070
18. ANS:
$2 \sqrt{ } 5$
PTS: 1
REF: Lesson 33: Converse of
the Pythagorean Theorem
NAT: NCTM G.1d TOP: Cumulative Test 7
19. ANS:
$x=1.73 ; y=10.3$
PTS: 1
REF: Lesson 34: Properties
of Parallelograms
NAT: NCTM G.1d TOP: Cumulative Test 7
20. ANS:
$L=4 \pi$ feet
MSC: Geom_S03_00103
PTS: 1
REF: Lesson 35: Finding Arc
Lengths and Areas of Sectors
NAT: NCTM G.1a TOP: Cumulative Test 7

MSC: Geom_S04_00073

MSC: Geom_S04_00078

