$\qquad$

## Geometry Cumulative Study Guide

 Date: $\qquad$
## Test 9

## Numeric Response

1.A band of gold surrounds the edge of a circular crown that has a radius of 9 inches. Find the length of the band of gold to the nearest tenth inch. Use 3.14 for $\pi$.
2.In triangle $X Y Z, \overline{X A}$ is a median, and $M$ is the centroid of the triangle. What is the length, in centimeters, of $\overline{X M}$ if $\overline{X A}$ measures 161.4 centimeters.
3.Find the perimeter, in feet, of the composite figure below.

4.Find the distance, in units, from the point $P(-9$, -5 ) to the line $x=-4$.

## Problem

5.State the converse of this statement: If two angles are vertical angles, then they are congruent.
Determine whether the original statement and its converse are true.
6. What is the sum of the interior angle measures of a convex, irregular quadrilateral?
7.A triangular scarf has an area of 144 square inches. The base of the scarf measures $3 x$ inches and the height measures $8 x+8$ inches. Find the base and height measurements of the scarf. Provide a justification for each step.
8. What is the included side of $\triangle S T U$ that is between $\angle T U S$ and $\angle S T U$.

Period: $\qquad$
9.Give a Pythagorean triple that is proportional to (119, 408, 425).
10. Write a two-column proof to prove that $\triangle B A C \cong \triangle D E C$ given that $C$ is a midpoint of $\overline{A E}$ and $\overleftrightarrow{A B} \| \overleftrightarrow{D E}$.

11.A triangle has side lengths that measure 20, 7 , and 14 units. Classify the triangle by side lengths and angles.
12.In the parallelogram shown, what are the measures of $\angle T Q R, \angle Q R S$, and $\angle S R U$ ?

13. Use the LA Congruence Theorem to prove that $\triangle A B C$ and $\triangle D E F$ are congruent.

14.Find a line that is parallel to $y=4 x+5$ and passes through the point $(-5,-4)$.
15.A supermarket chain has three stores located throughout the city at points $A(0,3), B(-8,3)$, and $C(-8,-5)$. The supermarket warehouse is equidistant from the three stores. Find the location of the warehouse.
16. Order the lengths of $\triangle X Y Z$ from least to greatest.

17. Consider $\triangle A B C$ and $\triangle D E F$ shown below.

Write a proportion to show that $A B: D E=B C: E F$.

18.Name a tangent line to the circle shown below and identify the point of tangency.

19.The pentagons in the diagram are similar. Find the values of $x$ and $y$.

20.Triangle $D E F$ has a base of 3 units and a height of 4 units. Angle $F$ is a right angle. Position $\triangle D E F$ on the coordinate plane.


## Geometry Cumulative Study Guide Test 9 Answer Section

## NUMERIC RESPONSE

1. ANS: 56.5

PTS: 1
REF: Lesson 23:
Introduction to Circles NAT:
NCTM G.1a
TOP: Cumulative Test 9 MSC:

Geom_S03_00066
2. ANS: 107.6

PTS: 1
REF: Lesson 32:
Altitudes and Medians of Triangles
NAT: NCTM G.1d TOP: Cumulative Test 9
3. ANS: 33

PTS: 1
REF: Lesson 40: Finding
Perimeters and Areas of Composite Figures
NAT: NCTM G.1a TOP: Cumulative Test 9
4. ANS: 5

PTS: 1
REF: Lesson 42: Finding
Distance from a Point to a Line
NAT: NCTM G.1d TOP: Cumulative Test 9

## PROBLEM

5. ANS:

Converse: If two angles are congruent, then they are vertical angles. The original statement is true. Its converse is not true.

PTS: 1
REF: Lesson 20:
Interpreting Truth Tables
NAT: NCTM RP.1b
TOP: Cumulative Test 9
MSC: Geom_S02_00116
6. ANS:
$360^{\circ}$

PTS: 1
REF: Investigation 3:
Exploring Angles of Polygons
NAT: NCTM G.1a TOP: Cumulative Test 9
7. ANS:

Sample: The formula for the area of a triangle is
$A=\frac{1}{2} b h$, so
$A=144, b=3 x, h=8 x+8 \quad$ Given
$A=\frac{1}{2} b h \quad$ Area formula for
a triangle
$144=\frac{1}{2}(3 x)(8 x+8) \quad l \begin{aligned} & \text { Substitution } \\ & \text { Property of }\end{aligned}$ Equality
$144=\frac{1}{2}\left(24 x^{2}+24 x\right)$
Distributive
Property
$144=12 x^{2}+12 x \quad$ Distributive

Property of
Equality
$12 x^{2}+12 x-144=144-144$ Subtraction
Property of
MSC: Geom_S04_00Qd\{ality
$12 x^{2}+12 x-144=0$
$12(x+4)(x-3)=0$
Simplify
Factor
There are two solutions to this factorization, $x=-4$ andI $x=3$ Gebmeseb, $x=-4$ gives a negative solution, so it is thrown out. Therefore,

| $x-3=0$ | Given |
| :--- | :--- |
| $x-3+3=0+3$ | Addition Property of |
| $x=3$ | Equality |
| Simplify |  |

Substitute $x=3$ into the expressions for base and height.
base $=3 x=3(3)=9$
height $=8 x+8=8(3)+8=24+8=32$
Therefore, the base of the scarf is 9 inches and the height is 32 inches.

| PTS: 1 | REF: Lesson 24: |  |
| :--- | ---: | :--- |
| Algebraic Proofs | NAT: NCTM A.2b |  |
| TOP: Cumulative Test 9 |  |  |
|  |  |  |
|  | MSC: | Geom_S03_00084 |

Algebraic Proofs NAT: NCTM A.2b
TOP: Cumulative Test 9
MSC: Geom_S03_00084
8. $\frac{\mathrm{ANS}:}{T U}$

PTS: 1
REF: Lesson 28:
Triangle Congruence: SAS
NAT: NCTM G.1a TOP: Cumulative Test 9
9. ANS:

Sample: $(7,24,25)$
PTS: 1
REF: Lesson 29: Using
the Pythagorean Theorem
NAT: NCTM G.1b TOP: Cumulative Test 9
10. ANS:

1. $C$ is the midpoint 1 . Given
of $\overline{A E}$
2. $\overline{A C} \cong \overline{C E} \quad$ 2. Definition of midpoint
3. $\angle B A C \cong \angle C E D$
4. $\angle A C B \cong \angle E C D$
5. $\triangle B A C \cong \triangle D E C$
6. ASA Congruence

Postulate

REF: Lesson 30:
PTS: 1
Triangle Congruence: ASA and AAS
NAT: NCTM RP.1c
TOP: Cumulative Test 9
MSC: Geom_S03_00104
11. ANS:

Scalene; Obtuse
PTS: 1
REF: Lesson 33:
Converse of the Pythagorean Theorem
NAT: NCTM G.1a TOP: Cumulative Test 9
12. ANS:
$98^{\circ}, 82^{\circ}, 98^{\circ}$

PTS: 1
REF: Lesson 34:
Properties of Parallelograms
NAT: NCTM G.1d TOP: Cumulative Test 9
13. ANS:

Sample: $\triangle A B C$ and $\triangle D E F$ are both right triangles, so the LA Right Triangle Congruence Theorem can be used. The legs $\overline{B C}$ and $\overline{F E}$ are congruent as given. Acute angles $\angle C$ and $\angle F$ are also congruent. Therefore, by the LA Right Triangle ©ASGr:uEnemThe
$\triangle A B C \cong \triangle D E F$.

PTS: 1
REF: Lesson 36: Right
Triangle Congruence Theorems
NAT: NCTM G.1c TOP: Cumulative Test 9
14. ANS: MSC: Geom_S03_00101
$y=4 x+16$
PTS: 1
REF: Lesson 37: Writing
Equations of Parallel and Perpendicular Lines
NAT: NCTM A. 4 TOP: Cumulative Test 9
15. ANS:
$(-4,-1)$

PTS: 1
REF: Lesson 38:
Perpendicular and Angle Bisectors of Triangles
NAT: NCTM G.2a TOP: Cumulative Test 9
16. ANS:
$\overline{X Y}, \overline{Y Z}, \overline{X Z}$

PTS: 1
REF: Lesson 39:
Inequalities in a Triangle
NAT: NCTM G.1a TOP: Cumulative Test 9
17. ANS:
$\frac{9}{3}=\frac{12}{4}$

PTS: 1
REF: Lesson 41: Ratios,
Proportions, and Similarity

18. ANS:

The tangent is $\overleftrightarrow{C E}$ and the point of tangency is D.

PTS: 1 MSC: Geom_REDA_ 60099 n 43: Chords, Secants, and Tangents
NAT: NCTM G.1a TOP: Cumulative Test 9
19. ANS:
$x=6, y=8$
PTS: 1
REF: Lesson 44:
Applying Similarity NAT: NCTM G.1b
TOP: Cumulative Test 9
MSC: Geom_S05_00080
20. ANS:

Sample:


PTS: 1
REF: Lesson 45:
Introduction to Coordinate Proofs
NAT: NCTM G.2b TOP: Cumulative Test 9
MSC: Geom_S05_00084
MSC: Geom_S05_00084

