Geometry Lesson 1

Date: \qquad
Objective: TSW know and understand points, lines, and planes.
Period: \qquad
In geometry, a definition of a term is a statement that defines a mathematical object. Definitions usually reference other mathematical terms. A basic mathematical term that is not defined using other mathematical terms is called an
\qquad term. In geometry, points, lines, and planes are \qquad terms that are the building blocks used for defining other terms.

A \qquad names a location and has no size. It is represented by a dot and labeled using a capital letter, such as P.

A \qquad is a straight path that has no thickness and extends forever. There are an infinite number of points on a line. A line is named using either a lowercase letter or any two points on the line. Two possible names for the line shown in the diagram are

\qquad and \qquad x.

Any set of points that lie on the same line are called \qquad points. In the diagram, A, B, and D are collinear.

If points do not lie on the same line, they are \qquad . Points A, B, and C are noncollinear.

Example 1 Identifying Lines and Collinear Points
a. Give two different names for the line.

SOLUTION
b. Name three collinear points and three noncollinear points.

SOLUTION

A \qquad is a flat surface that has no thickness and extends forever. A plane is named using either an uppercase letter or \qquad noncollinear points that lie in the plane. The plane in the diagram below could be called \qquad P or plane \qquad .

Lines or points that are in the same plane are said to be \qquad . If there is no plane that contains the lines or points, then they are noncoplanar.
\qquad is the set of all points. Therefore, space includes all lines and all planes.

Example 2 Identifying Planes
What are two different names for this plane?
SOLUTION

Example 3 Identifying Coplanar Lines

a. Identify the coplanar and noncoplanar lines in the diagram.

SOLUTION

b. Identify the coplanar and noncoplanar lines in the diagram. SOLUTION

Math Reasoning

Model Can two planes have no intersections at all? What common objects illustrate what this might look like?

An \qquad is the point or set of points in which two figures meet.

When two lines intersect, their intersection is a single \qquad .

When two planes intersect, their intersection is a single \qquad .

If a line lies in a plane, then their intersection is the \qquad itself. If the line does not lie in the plane, then their intersection is a single \qquad .

Lines q and m intersect at point Q. Plane R intersects plane P at line \qquad _.

The intersection of plane R and line m is line \qquad .

Line q intersects planes R and P at point \qquad .

Example 4 Intersecting Lines and Planes

a. What is the intersection of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$?

SOLUTION

b. What is the intersection of $\overleftrightarrow{P Q}$ and $\overleftrightarrow{R S}$? What is the intersection of planes M and L ?

SOLUTION

You Try!!!!

Identify each of the following from the diagram.
a. All of the lines.
b. A pair of collinear points.
c. All of the planes.

d. Three coplanar points.
e. Two coplanar lines.
f. A pair of noncoplanar lines.

Use the diagram to answer each question.
g. What is the intersection of $\overleftrightarrow{J K}$ and $\overleftrightarrow{N M}$?

h. What is the intersection of $\overleftrightarrow{J K}$ and plane W ?

What is the intersection of $\overleftrightarrow{N P}$ and plane W?

