Lesson 11
 Finding Midpoints

For two points on a number line A and B, the midpoint of $\overline{A B}$ is the point that is equidistant from both A and B. For point C to be equidistant from A and B means that the distance from A to C is the same as the distance from B to C.

Midpoint on a Number Line - The midpoint C of $\overline{A B}$ has a coordinate that is the average of the coordinates of A and B :

$$
C=\frac{A+B}{2}
$$

The midpoint of $\overline{A B}$ on a coordinate plane is the point M on $\overline{A B}$ that is equidistant from A and B. To find the midpoint of a segment on a coordinate plane, use the midpoint formula given below.

Midpoint on a Coordinate Plane - The midpoint M of $\overline{A B}$ with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, has coordinates that are given by the formula:

$$
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right)
$$

Example 1 Finding the Midpoints

a. What is the coordinate of the midpoint of $\overline{A B}$?
SOLUTION The midpoint is the coordinate on the number line that is the average of the coordinates of the points:

$$
\begin{aligned}
C & =\frac{2+6}{2} \\
C & =4
\end{aligned}
$$

b. Determine the midpoint M of $\overline{A B}$ connecting (1 , 2) and (5, 6).

SOLUTION
Substitute (1,2) for $\left(x_{1}, y_{1}\right)$ and $(5,6)$ for $\left(x_{2}, y_{2}\right)$.

$$
\begin{gathered}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right) \\
M\left(\frac{1+5}{2}, \frac{2+6}{2}\right) \\
M(3,4)
\end{gathered}
$$

To check, plot the point $(3,4)$. It should lie on $\overline{A B}$.

Also, the distance formula can be used to verify that (3, 4) is equidistant from A and B :

$$
\begin{array}{ll}
M A=\sqrt{(3-1)^{2}+(4-2)^{2}} M B=\sqrt{(3-5)^{2}+(4-6)^{2}} \\
M A=\sqrt{(2)^{2}+(2)^{2}} & M B=\sqrt{(-2)^{2}+(-2)^{2}} \\
M A=\sqrt{4+4} & M B=\sqrt{4+4} \\
M A=\sqrt{2(4)} & M B=\sqrt{2(4)} \\
M A=2 \sqrt{2} & M B=2 \sqrt{2}
\end{array}
$$

Example 2 Finding Midpoints of

Sides

Determine the midpoint of each side of $\triangle M N P$. SOLUTION Use the midpoint formula to find A, the midpoint of $\overline{M N}$.

$$
\begin{gathered}
A\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right) \\
A\left(\frac{0+6}{2}, \frac{2+1}{2}\right) \\
A(3,1.5)
\end{gathered}
$$

Similarly, the midpoints B of $\overline{N P}$ and C of $\overline{M P}$ have coordinates:
$B\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right)$
$B\left(\frac{3+6}{2}, \frac{7+1}{2}\right)$
$B(4.5,4)$

$$
\begin{aligned}
& \mathrm{C}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right) \\
& \mathrm{C}\left(\frac{0+3}{2}, \frac{2+7}{2}\right) \\
& \mathrm{C}(1.5,4.5)
\end{aligned}
$$

Example 3 Application: Navigation

A fishing boat dropped its anchor equidistant from Cape Spirit and Endeavor Rock Lighthouse, on the segment joining the two locations. Find the coordinates of the boat. SOLUTION Let point T represent the location of the boat. Point T is the midpoint of the segment with endpoints $(-3,2)$ and (3, -3).

$$
\begin{gathered}
T\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{1}}{2}\right) \\
T\left(\frac{-3+3}{2}, \frac{2+(-3)}{2}\right) \\
T(0,-0.5)
\end{gathered}
$$

Draw the location of the boat on the diagram.

You Try!!!!

d. Determine the coordinates of the midpoint of each side of $\Delta J K L$.

$$
\begin{aligned}
& A(-1,1.5) \\
& \mathrm{B}(2,1) \\
& \mathrm{C}(0,-0.5)
\end{aligned}
$$

Assignment

Page 68
Lesson Practice a-e (Ask Mr. Heintz)

Page 69
Practice 1-30 (Do the starred ones first)

