Lesson 13

Introduction to Triangles

A triangle is a three-sided polygon. A triangle can be classified by its angles or by its sides. The following are three ways to classify a triangle according to its angles.

Acute Triangle - Any triangle that has three acute angles is an acute triangle.
Obtuse Triangle - Any triangle that has one obtuse angle is an obtuse triangle.
Right Triangle -Any triangle that has one right angle is a right triangle.
Equiangular triangle - A special kind of acute triangle which has three congruent angles.

Example 1 Classifying Triangles by Angles

a. In the diagram, which triangle is obtuse? SOLUTION
$\triangle M N O$ is obtuse because it has one obtuse angle M.

Example 1 Classifying Triangles by Angles

b. Which triangle is a right triangle?

SOLUTION
$\triangle J L K$ is a right triangle because $\angle L$ is a right angle.

Example 1 Classifying Triangles by Angles

c. Are any of the triangles equiangular? SOLUTION
No. $\triangle J L K$ and $\triangle M N O$ are not acute, so they cannot be equiangular.
$\triangle P Q R$ is acute (because all its angles are acute), but is not equiangular because $\angle P$ is not congruent to the other two angles.

Triangles may also be classified by the lengths of their sides. The following are three ways to classify a triangle by its sides.
Equilateral Triangle - Any triangle that has three congruent sides is an equilateral triangle. Isosceles Triangle - Any triangle with at least two congruent sides is an isosceles triangle. Scalene Triangle - Any triangle that does not have any congruent sides is a scalene triangle.

Example 2 Classifying Triangles by

 Sidesa. In the diagram, which triangle is scalene? SOLUTION $\Delta G H J$ is scalene, because none of its sides are congruent.

Example 2 Classifying Triangles by

 Sidesb. Which triangle is equilateral?

SOLUTION
$\triangle A B C$ is equilateral, because all three sides are congruent.

Example 2 Classifying Triangles by

 Sidesc. Are any of the triangles isosceles but not equilateral?
SOLUTION
Yes. $\triangle A B C$ and $\triangle D E F$ are both isosceles, because at least two sides are congruent. $\triangle D E F$ is not equilateral because its third side is not congruent to the other two.

Vertex of a triangle - One of the points where two sides of the triangle intersect.

Base of a Triangle - Any one of the triangle's sides.

Height of a Triangle - The perpendicular segment from a vertex to the line containing the opposite side. The length of that segment is also called the height.

In $\triangle G H I$, the perpendicular segment from H does not intersect the base.
The base is extended so a perpendicular segment can be drawn to show the height. To find the area of a triangle, both the base and the height must be known.

Area of a Triangle - The area of a triangle is given by the formula below, where b is the length of the triangle's base and h is the height.

$$
A=\frac{1}{2} b h
$$

The diagram shows $\triangle A B C$ enclosed in rectangle $A B D E$. Notice that $\triangle A F C$ and $\triangle C E A$ have the same base and height, so areas A_{1} and A_{2} are equal. Similarly, $A_{3}=A_{4}$. The area of rectangle $A B D E$ is $b \times h$. Therefore,
Area of $A B C D=A_{1}+A_{2}+A_{3}+A_{4}$ $b h=A_{1}+A_{1}+A_{3}+A_{3}$
$b h=2\left(A_{1}+A_{3}\right)$
1
$\frac{1}{2} b h=A_{1}+A_{3}$
$\frac{1}{2} b h=$ Area of $\triangle A B C$

Example 3 Finding Perimeter and Area of a Triangle

a. Determine the perimeter of $\triangle R S T$. SOLUTION
$P=T R+R S+S T$
$=40.26+31.5+12.5$
= 84.26
The perimeter is 84.26 cm .

Example 3 Finding Perimeter and Area of a Triangle

b. Determine the area of _RST. SOLUTION
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(31.5)(10)$

$A=157.5$
The area is 157.5 square centimeters.

Example 4 Application: Farming

A triangular plot of land has a northwestern boundary measuring 64.6 yards, a southern boundary measuring 138.0 yards, and a northeastern boundary measuring 114.1 yards. The perpendicular distance from the southern boundary to the northern corner of the plot is 53.0 yards.
a. How much fencing is required to surround the plot? SOLUTION The perimeter is
$P=64.6+138.0+114.1$
$=316.7$
316.7 yards of fencing are required.

Example 4 Application: Farming

b. It takes 100 pounds of barley seed to seed 2400 square yards of land. How much seed is needed for the whole plot, to the nearest pound?

SOLUTION The area of the plot is

$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2}(138)(53) \\
& A=3657 y d^{2}
\end{aligned}
$$

100 pound of barley covers 2400 square yards
Use a proportion:

$$
\begin{aligned}
& \frac{100}{2400}=\frac{x}{3657} \\
& (3657)(100)=2400 x \\
& 365700=2400 x \\
& \frac{365700}{2400}=x \\
& 152.375=x
\end{aligned}
$$

To the nearest pound, 152 pounds of seed is needed for the whole plot.

You Try!!!!

e. A right isosceles triangle has legs measuring 13.2 centimeters and a hypotenuse measuring 18.7 centimeters. What is its perimeter? 45.1 cm
f. What is the area of the triangle in part e? $87.12 \mathrm{~cm}^{2}$

Assignment

Page 81
Lesson Practice (Ask Mr. Heintz)

Page 82
Practice 1-30 (Do the starred ones first)

