Geometry Lesson 15

Date: \qquad
Objective: TSW identify different polygons.
Period: \qquad
\qquad - A closed plane figure formed by three or more segments. Each segment intersects exactly two other segments only at their endpoints. No two segments with a common endpoint are collinear.
\qquad - The segments that form a polygon.
\qquad of a Polygon - The intersection of two of its sides.

Polygons

Polygon - A polygon in which all angles are congruent.
\qquad Polygon - If a polygon is both equiangular and equilateral.
\qquad Polygon - If a polygon is not equiangular and equilateral.

Hint

Equilateral and equiangular polygons have the same traits as equilateral and equiangular triangles, as introduced in lesson 13.
A

B

C

D

In the diagram, polygons A and B are \qquad . Polygons A and C are \qquad . Since polygon A is both equiangular and equilateral, it is a regular polygon. Polygons B, C and D are all irregular.

Polygons are named by the number of sides they have. The chart below shows some common polygons and their names.

Name	Sides	Regular Polygon	Irregular Polygon
Triangle	3		
Quadrilateral	4		
Pentagon	5		
Hexagon	6		
Heptagon	7		\sum
Octagon	8		\square
Nonagon	9		\square
Decagon	10		
Hendecagon	11	\square	\sum
Dodecagon	12		\sum_{n}^{M}

Example 1 Classifying Polygons

Classify each polygon. Determine whether it is equiangular, equilateral, regular, irregular, or more than one of these.

A

B

C

D
$\langle>$
of a Polygon - A segment that connects two nonconsecutive vertices of a polygon.
Example: Pentagon $A B C D E$ has two diagonals, $\overline{A C}$ and $\overline{A D}$, from vertex A. Three other diagonals could be drawn: $\overline{B D}, \overline{B E}$, and $\overline{C E}$.

Diagonals can help determine whether a polygon is concave or convex.
\qquad Polygon - Every diagonal of the polygon lies inside it, except for the endpoints.

Polygon - At least one diagonal can be drawn so that part of the diagonal contains points in the exterior of the polygon.

If two polygons have the same size and shape, they are congruent polygons.
 Example 2 Identifying Polygon Properties
a. Find a diagonal that contains points in the exterior of polygon $A B C D$.

SOLUTION

b. Determine whether polygon $E F G H$ is convex or concave. Explain.

SOLUTION
c. Are polygons $A B C D$ and $F G H E$ congruent? Justify your answer.

SOLUTION

Interior angle of a polygon - An angle formed by two sides of a polygon with a common vertex. angle of a polygon - An angle formed by one side of a polygon and the extension of an adjacent side.

In the diagram, $\angle C D A$ is an interior angle and $\angle A D E$ is an exterior angle.

Example 3 Identifying Interior and Exterior Angles of Polygons For each numbered angle in the polygon, determine whether it is an interior angle or an exterior angle.

SOLUTION

Example 4 Application: Tile Patterns
This floor tile pattern uses polygonal tiles that fit together exactly.
a. Name the two types of polygons used in the pattern. Are they regular or irregular? Explain.

SOLUTION

b. Pick any pair of unshaded polygons. Are they congruent? Are they convex or concave? Explain. SOLUTION

You Try!!!!

a.Name each polygon. Determine whether it is equiangular, equilateral, regular, irregular, or more than one of these.
A

C

b. Find a diagonal in polygon $G H J K L$ that contains points in the exterior of the polygon.

c. Determine whether polygon $V W X Y Z$ is convex or concave. Explain.
d.Are polygons GHJKL and VWXYZ congruent? Justify your answer.
e. For each numbered angle in the polygon, determine whether it is an interior angle or an exterior angle.

f. Name the type of polygon used in this pattern. Are the polygons regular or irregular? Explain.
g.Pick any pair of polygons in this pattern. Are they congruent? Are they convex or concave? Explain.

