Geometry Lesson 20

Objective: TSW interpret truth tables.

Period: _____

A conditional statement has the form, "If p, then q." Recall that several other statements can be constructed from the conditional statement.

- the converse statement, "_____

Statement - The combination of a conditional statement and its converse. It is true only when both the original statement and its converse are true.

The biconditional of "If p, then q" and "if q, then p" can be written as "

Example 1 Analyzing Conditional Statements

- a. State the converse of this statement: If $x^2 \le 4$, then $x \le 2$.
- b. Determine if the statement and converse from part a are true. **SOLUTION**

c. Write the biconditional of the statement. "If $x^2 \le 4$, then $x \le 2$." Is it true? Explain why or why not. SOLUTION

A truth table is a table that lists all possible combinations of truth values for a hypothesis, a conclusion, and the conditional statement or statements they form. Truth tables are useful tools because they show all the true/false possibilities at a glance:

Hypothesis: p	Conclusion: q	Statement: If p, then q
Т	T	
T	F	
F	T	
F	F	

Math Reasoning Analyze Why is a conditional statement true even when both its hypothesis and conclusion is false?

Example 2 Using a Truth Table

a. Complete a truth table for the statement in Example 1.

SOLUTION

Hypothesis: $x^2 \le 4$	Conclusion: $x \le 2$	Statement: If $x^2 \le 4$, then $x \le 2$
T	T	
T	F	F
F	T	
F	F	

Notice that the statement is only false when the hypothesis is true but the conclusion is false (the second row of the table). For the statement

b. Add columns to your truth table for the statement's converse and its biconditional. Complete the table for these two statements.

SOLUTION

Hypothesis: $x^2 \le 4$	Conclusion: $x \le 2$	Statement: If $x^2 \le 4$, then $x \le 2$	Converse: If $x \le 2$, then $x^2 \le 4$	Biconditional: $x^2 \le 4$ if and only if $x \le 2$
Т	T	T		
T	F	F		
F	T	T		
F	F	Т		

Statement - A statement that combin	nes two statements using <i>and</i> or <i>or</i> . It is similar
to a conditional statement, except that p and q are related by "and" or "or	r" rather than by "if" and "then".
A compound statement that uses	Conjunctions have the form " p and q ."
For example, statement p stands for "I had bacon for breakfast," and q sta	ands for "I had eggs for breakfast." If you have
bacon and eggs for your breakfast, the conjunction, "I had bacon and eggs	for breakfast," is true because p and q are
both true. But if you have bacon and toast, the conjunction is false, because	se p is true but q is not.
A compound statement that uses	Disjunctions have the form " p or q ." For
example, suppose a lunch menu offers the choice of "soup or salad" as an	appetizer. This is considered a disjunction
because you can choose one or the other.	

Example 3 Analyzing Compound Statements

A clothing store accepts cash or credit cards but not personal checks. It gives discounts on all cash purchases. Consider the statements, "a customer makes a credit-card purchase," and, "a customer gets a discount."

a. What is the conjunction of these statements? Use a truth table to assess its truth value.

SOLUTION

Statement: p	Statement: q	Conjunction: p and q
T	T	•
T	F	-
F	T	ı
F	F	ı

b. What is the disjunction of these statements? Is it true or false? SOLUTION

Statement: p	Statement: q	Conjunction: p and q	Disjunction: p or q
T	T	T	
T	F	F	
F	T	F	-
F	F	F	

Math Reasoning Justify Why is a disjunction true in more cases than a conjunction?

Example 4 Application: Astronomy

When stars run out of fuel, they either become black holes or degenerate stars. Consider the statements, "A star will become a degenerate star," and "A star will become a black hole." Form the conjunction and disjunction of these statements. Is the conjunction true? Is the disjunction true? Explain.

SOLUTION

You Try!!!!

For a–c, consider the statement, "If a quadrilateral is equiangular, then it is a rhombus."

c. Write the biconditional of the statement. Is it true? Explain.

Use the description of the restaurant to answer d–g.

Restaurants: The chef's special at a five-star restaurant offers its customers a complimentary appetizer based on their choice of entrée. If customers order a filet mignon entrée, they receive leek soup for the appetizer. If customers order grilled salmon for the entrée, they receive baby spinach salad for the appetizer.

- d. Use truth tables to represent the statement, "If customers order grilled salmon for the entrée, they receive baby spinach salad for the appetizer."
- . Interpret the tables for the statements.

Hypothesis: If	Conclusion: They	Statement: If	Converse: If the	Biconditional:
customers order	receive baby	customers order	customer receives	Customers order
grilled salmon for	spinach salad for the	grilled salmon for	baby spinach salad	grilled salmon if and
the entrée	appetizer.	the entrée, then	for the appetizer,	only if they received
		they receive baby	then they order	baby spinach salad
		spinach salad for the	grilled salmon for	for the appetizer.
		appetizer.	the entrée.	

e. Add columns to your truth tables to address the statements converses and biconditionals. Interpret the tables for these statements.

For f and g, consider the statements, "A customer orders a filet mignon entrée," and, "A customer receives a baby spinach salad appetizer."

- f. What is the conjunction of these statements? Use a truth table to assess its truth value.
- g. What is the disjunction of these statements? Is it true or false?

A customer orders a filet mignon entrée.	A customer receives a baby spinach salad appetizer.	Conjunction: A customer orders a filet mignon entrée AND receives a baby spinach salad appetizer.	Disjunction: A customer orders a filet mignon entrée OR receives a baby spinach salad appetizer.