Lesson 22

Finding Areas of Quadrilaterals

Area of a Parallelogram - To find the area of a parallelogram (A), use this formula, where b is the length of the base, and h is the height.

Since rectangles, rhombuses, and squares are all types of parallelograms, the areas of these shapes can also be found using this formula.

Example 1 Finding Areas of Parallelograms

Find the area of each parallelogram. a.

SOLUTION
$A=b h$
$=(22 \mathrm{in}$.) (12 in .)
$=264 \mathrm{in}^{2}$

Example 1 Finding Areas of Parallelograms

Find the area of each parallelogram. b.

SOLUTION
$A=b h$
$=(3 \mathrm{yd})(3 \mathrm{yd})$
$=9 y d^{2}$

Example 1 Finding Areas of Parallelograms

Find the area of each parallelogram.
C.

SOLUTION
$A=b h$
$=(15 \mathrm{ft})(8 \mathrm{ft})$
$=120 f t^{2}$

Area of a Trapezoid

Area of a Trapezoid - To find the area of a trapezoid (A), use the following formula, where b_{1} is the length of one base, b_{2} is the length of the other base of the trapezoid, and h is the trapezoid's height.

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

Example 2 Finding Areas of Trapezoids

Find the area of each trapezoid. a.

SOLUTION
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$A=\frac{1}{2}(20 i n .+28 i n)$.6 in
$A=144 \mathrm{in}^{2}$

Example 2 Finding Areas of Trapezoids

Find the area of each trapezoid. b.

SOLUTION

$$
\begin{aligned}
& A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \\
& A=\frac{1}{2}(30 \mathrm{~cm}+32 \mathrm{~cm}) 11 \mathrm{~cm} \\
& A=341 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of a Rhombus - To find the area of a rhombus (A), use the following formula, where $d 1$ is the length of one diagonal, and $d 2$ id the length of the other diagonal of the rhombus.

$$
A=\frac{1}{2} d_{1} d_{2}
$$

Example 3 Finding Areas of Rhombuses

Find the area of each rhombus.
a.

SOLUTION
$A=b h$
$\mathrm{A}=9.5 \mathrm{~cm} \times 9.0 \mathrm{~cm}$
$A=85.5 \mathrm{in}^{2}$

Example 3 Finding Areas of Rhombuses

Find the area of each rhombus. b.

SOLUTION
$A=\frac{1}{2} d_{1} d_{2}$
$A=\frac{1}{2}(11 \mathrm{in} . \times 30 \mathrm{in}$.
$A=165$ in $^{2}{ }^{2}$

Example 4 Application: Carpeting

Two areas of a day care need to be carpeted. The play area is shaped like a trapezoid, and the supplies area is shaped like a rectangle. Use the diagram of these two areas to determine the total area that needs to be carpeted.
SOLUTION
$A=/ w$
$=26 \times 16$
$=416 f t^{2}$

Example 4 Application: Carpeting

For the trapezoidal play area,
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

$(416+1155) f t^{2}$
$=1571 \mathrm{ft}^{2}$
Therefore, a total area of 1571 square feet needs to be carpeted.

You Try!!!!

Find the area of each parallelogram. b.

You Try!!!!

c.Find the area of a trapezoid with parallel sides measuring 14 centimeters and 21 centimeters and a height of 13 centimeters.
e. Find the area of a rhombus that has diagonal lengths of 8 inches and 11 inches.

Assignment

Page 141
Lesson Practice (Ask Mr. Heintz)
Page 141
Practice 1-30 (Do the starred ones first)

