Lesson 23

Introduction to Circles

Circle - The set of points in a plane that are a fixed distance from a given point.

Center - The point at the center of the circle.
To name a circle - Use the \odot symbol and the center point. For example, $\odot \boldsymbol{A}$ is read, "circle A."

Interior - All the points within the circle.
Radius - Any segment whose endpoints are the center of the circle and a point on the circle.

Diameter - Any segment with both endpoints on the circle that passes through the center. The length of a diameter is always twice the length of a radius.

Two circles are congruent if they have congruent radii.

Example 1 Naming Parts of a Circle

Identify a diameter, a radius, and the center of the circle at right.
SOLUTION
$\overline{A B}$ is a diameter
$\overline{A C}$ and $\overline{B C}$ are both radii
The center of the circle is point C.

Circumference of a Circle - The perimeter of the circle or distance around the circle.

$$
C=2 \pi r \quad \text { or } \quad C=\pi d
$$

Pi , represented by the symbol π, is an irrational number that is defined as the ratio of the circumference of a circle to its diameter.

$$
\pi \approx 3.14 \text { or } \pi \approx \frac{22}{7}
$$

Example 2 Finding Circumference

Find the circumference of the circle to the nearest hundredth of an inch. Use 3.14 for π. SOLUTION
The radius of the circle is 14.00 inches.
$C=2 \pi r$
≈ 2 (3.14) (14.00)
≈ 87.92
Therefore, the circumference is approximately 87.92 inches.

Area of a Circle - To find the area (A) of a circle, use the formula below, where r is the circle's radius.

$$
A=\pi r^{2}
$$

Example 3 Finding Area

Find the area of each circle to the nearest hundredth of a square unit. Use 3.14 for π.
a.

SOLUTION
The radius of the circle is 2 meters.

$A=\pi r^{2}$
$A \approx(3.14) 2^{2}$
$A \approx 12.56$
Therefore, the area is approximately $12.56 \mathrm{~m}^{2}$.

Example 3 Finding Area

Find the area of each circle to the nearest hundredth of a square unit. Use 3.14 for π.
b.

SOLUTION
Divide the diameter by 2 to determine the radius measurement.
$r=\frac{26}{2}$
$r=13$
The radius of 13 inches can then be substituted into the formula. $A=\pi r^{2}$
$A \approx(3,14) 13^{2}$
$A \approx 530.66$
Therefore, the area is approximately $530.66 f t^{2}$.

Example 4 Application: Urban Design and Planning

A dog park is being constructed with a circular fence surrounding the park. The fence has a radius that is 50 yards long. Use 3.14 for π.
a. What is the distance around the fence to the nearest yard?
SOLUTION
To find the total distance around the fence, the circumference must be calculated.
$C=2 \pi r$
≈ 2 (3.14)(50)
≈ 314
Therefore, the total distance around the fence is approximately 314 yards.

Example 4 Application: Urban Design and Planning

A dog park is being constructed with a circular fence surrounding the park. The fence has a radius that is 50 yards long. Use 3.14 for π. b. Approximately how many square yards of sod would be needed to completely cover the area inside the fence with grass?
SOLUTION
$A=\pi r^{2}$
$A \approx(3.14) 50^{2}$
$A \approx 7850$
Therefore, the total area to be covered with sod is approximately $7850 y d^{2}$.

You Try!!!!!!

a. Draw $\odot P$ with a radius, a diameter, and the center labeled.
c. Find the area of a circle with a radius of 31 centimeters. Use 3.14 for π and round to the nearest hundredth of a square centimeter.
d.Find the area of a circle with a diameter of 1 yard. Use 3.14 for π and round to the nearest hundredth of a square yard.

Assignment

Page 147
Lesson Practice (Ask Mr. Heintz)

Page 147
Practice 1-30 (Do the starred ones first)

