Lesson 26

Central Angles and Arc Measure

Arc - A part of a circle consisting of two points on the circle, called endpoints, and all the points on the circle between them.

Adjacent Arcs - When two arcs on a circle share exactly one endpoint.

Central Angle - An angle whose vertex is at the center of a circle.

Arcs of a Circle

Minor Arc - An arc that is smaller than half a circle.
The measure of a minor arc is the same as the measure of its central angle. The measure of a minor arc must be greater than 0° and less than 180°.
All minor arcs are named using the two endpoints of the arc. $\widehat{A B}$
Major Arc - An arc that is larger than half a circle.
The measure of a major arc is the difference of 360° and the measure of the associated minor arc.
The measure of a major arc must be greater than 180° and less than 360°. All major arcs are named using the two endpoints of the arc and a point on the circle between the endpoints. $\overline{A B C}$

Semicircle - An arc equal to half a circle.
The measure of a semicircle is 180°.
Like major arcs, semicircles can be named with the two endpoints of the semi-circle and a point on the circle between the endpoints.

Example 1 Identifying Arcs and Angles

Identify a central angle, minor arc, major arc, and semicircle in $\odot P$.
SOLUTION
Two central angles are pictured: $\angle A P B$ and $\angle A P C$.
Each central angle forms a minor arc: $\widehat{A B}$ and $\widehat{A C}$.
There are also two major arcs: $\widehat{A B C}$ and $\widehat{A C B}$.
Finally, there are two semicircles: $\widehat{B A C}$ and $\widehat{B D C}$.

Example 2 Finding Arc Measures

What is $\mathrm{m} \widehat{A B}$?
SOLUTION
The central angle's measure is 35°, so the measure of the arc is also 35°.

Congruent Arcs - Two arcs that are in the same circle or in congruent circles and that have the same measure.

Example 3 Congruent Arcs

The measure of $\widehat{D E}$ is given by the expression $3 x+10$, and the measure of $\widehat{H J}$ is given by the expression $5 x-40$. It is given that $\overparen{D E} \cong H J$. Determine the value of x and the measure of each arc.
SOLUTION
Since the two arcs are congruent, the expressions for their measures must be equal.
Therefore,
$3 x+10=5 x-40$
$3 x+10-10=5 x-40-10$
$3 x=5 x-50$
$3 x-5 x=5 x-50-5 x$
$-2 x=-50$
$\frac{-2 X}{-2}=\frac{-50}{-2}$
$x=25$
Therefore, $m \widehat{D E}=3(25)+10$
$=75+10$
$=85^{\circ}$
Since the arcs are congruent, $m \widehat{H J}=85^{\circ}$.

Postulate 14: Arc Addition Postulate - The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

Example: $m \widehat{Q R}+m \widehat{R S}=m \widehat{Q S}$

Example 4 Using the Arc Addition Postulate

a. Use the Arc Addition Postulate to write an expression that represents $m \widehat{A C}$.
SOLUTION
While there are several arcs indicated, the only two that are adjacent and make up the same arc as $\widehat{A C}$ are $\widehat{A D}$ and $\widehat{D C}$. Therefore, $m \widehat{A D}+m \widehat{D C}=m \widehat{A C}$.

Example 4 Using the Arc Addition Postulate

b. Find $m \widehat{A C}$.

SOLUTION
Since $m \widehat{A D}+m \widehat{D C}=m \widehat{A C}$
$=80^{\circ}+35^{\circ}$
$=115^{\circ}$
Therefore, $m \widehat{A C}=115^{\circ}$.

Example 5 Application: Surveillance Cameras

The cameras' overlap will be any number of degrees over 180° that they cover when their viewing angles are added together. How many surveillance cameras would be needed to cover a semicircle of a room, with minimal overlap of the area to be viewed? How much of an overlap would these cameras produce?

Example 5 Application: Surveillance Cameras

SOLUTION
The Arc Addition Postulate can be used to determine the number of cameras to be used. A circle is 360°, so a semicircle is 180°. To find the number of cameras needed, divide 180° by the viewing angle of a camera:

$$
\frac{180^{\circ}}{42^{\circ}}=4.3
$$

Four cameras would not quite cover the area, so 5 cameras are needed. To find the overlap, multiply the number of cameras by the viewing angle and subtract 180° :

$$
\left(42^{\circ} \cdot 5\right)-180^{\circ}=30^{\circ} .
$$

You Try!!!!!!

Draw a diagram of a circle, identifying a central angle, a minor arc, and a major arc.

Identify the measure of the minor arc.

You Try!!!!!!

The measure of $\widehat{J K}$ is given by the expression $2 x-$ 15 , and the measure of $\widehat{L M}$ is given by the expression $x+30$. It is given that $\widehat{J K} \cong \widehat{L M}$. Determine the value of x and the measure of each arc.

Use the Arc Addition Postulate to write an expression that represents $m \widehat{A B}$.

You Try!!!!!!

Find $m \widehat{D E G}$.

Outdoor Lighting A lamp projects a beam of light over a 100° arc. How many lamps facing outward from the center of a circle would be needed to form a full circle of light at the center of a park? What would be the overlap of these beams?

Assignment

Page 165
Lesson Practice (Ask Mr. Heintz)
Page 166
Practice 1-30 (Do the starred ones first)

