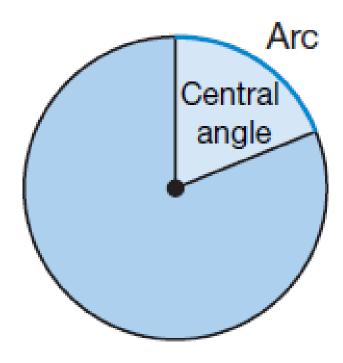

Lesson 26 Central Angles and Arc Measure


Arc – A part of a circle consisting of two points on the circle, called endpoints, and all the points on the circle between them.

Adjacent Arcs – When two arcs on a circle share exactly one endpoint.

Central Angle – An angle whose vertex is at the center of a circle.

Arcs of a Circle

Minor Arc – An arc that is smaller than half a circle. The measure of a minor arc is the same as the measure of its central angle. The measure of a minor arc must be greater than 0° and less than 180°.

All minor arcs are named using the two endpoints of the arc. \widehat{AB}

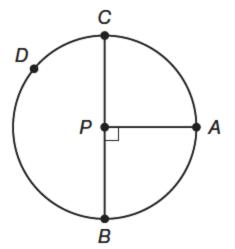
Major Arc - An arc that is larger than half a circle.

The measure of a major arc is the difference of 360° and the measure of the associated minor arc.

The measure of a major arc must be greater than 180° and less than 360°. All major arcs are named using the two endpoints of the arc and a point on the circle between the endpoints. \widehat{ABC}

Semicircle – An arc equal to half a circle.

The measure of a semicircle is 180°.

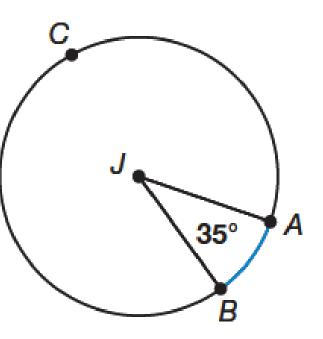

Like major arcs, semicircles can be named with the two endpoints of the semi-circle and a point on the circle between the endpoints.

Example 1 Identifying Arcs and Angles

Identify a central angle, minor arc, major arc, and semicircle in $\odot P$.

SOLUTION

Two central angles are pictured: $\angle APB$ and $\angle APC$. Each central angle forms a minor arc: \widehat{AB} and \widehat{AC} . There are also two major arcs: \widehat{ABC} and \widehat{ACB} . Finally, there are two semicircles: \widehat{BAC} and \widehat{BDC} .



Example 2 Finding Arc Measures

What is m \widehat{AB} ?

SOLUTION

The central angle's measure is 35°, so the measure of the arc is also 35°.

Congruent Arcs – Two arcs that are in the same circle or in congruent circles and that have the same measure.

Example 3 Congruent Arcs

The measure of \widehat{DE} is given by the expression 3x + 10, and the measure of \widehat{HJ} is given by the expression 5x - 40. It is given that $\widehat{DE} \cong \widehat{HJ}$. Determine the value of x and the measure of each arc.

SOLUTION

Since the two arcs are congruent, the expressions for their measures must be equal. Therefore,

```
3x + 10 = 5x - 40

3x + 10 - 10 = 5x - 40 - 10

3x = 5x - 50

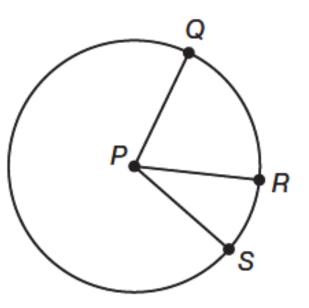
3x - 5x = 5x - 50 - 5x

-2x = -50

\frac{-2x}{-2} = \frac{-50}{-2}

x = 25

Therefore, m\widehat{DE} = 3(25) + 10

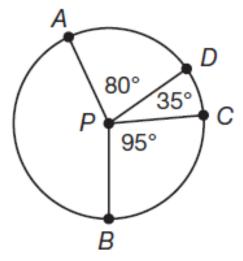

= 75 + 10

= 85^{\circ}

Since the arcs are congruent, m\widehat{HI} = 85^{\circ}.
```

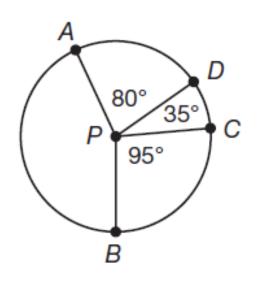
<u>Postulate 14: Arc Addition Postulate – The</u> <u>measure of an arc formed by two adjacent arcs</u> <u>is the sum of the measures of the two arcs.</u>

Example: $m\widehat{QR} + m\widehat{RS} = m\widehat{QS}$



Example 4 Using the Arc Addition Postulate

a. Use the Arc Addition Postulate to write an expression that represents \widehat{mAC} . SOLUTION


While there are several arcs indicated, the only two that are adjacent and make up the same arc as \widehat{AC} are \widehat{AD} and \widehat{DC} . Therefore,

 $m\widehat{AD} + m\widehat{DC} = m\widehat{AC}.$

Example 4 Using the Arc Addition Postulate

b. Find $m\widehat{AC}$. SOLUTION Since $m\widehat{AD} + m\widehat{DC} = m\widehat{AC}$ = 80° + 35° = 115° Therefore, $m\widehat{AC} = 115^{\circ}$.

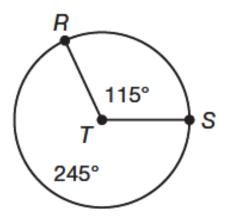
Example 5 Application: Surveillance Cameras

The cameras' overlap will be any number of degrees over 180° that they cover when their viewing angles are added together. How many surveillance cameras would be needed to cover a semicircle of a room, with minimal overlap of the area to be viewed? How much of an overlap would these cameras produce?

Example 5 Application: Surveillance Cameras

SOLUTION The Arc Addition Postulate can be used to determine the number of cameras to be used. A circle is 360°, so a semicircle is 180°. To find the number of cameras needed, divide 180° by the viewing angle of a camera:

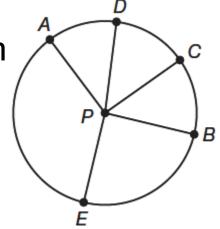
 $\frac{180^{\circ}}{42^{\circ}} = 4.3$


Four cameras would not quite cover the area, so 5 cameras are needed. To find the overlap, multiply the number of cameras by the viewing angle and subtract 180°:

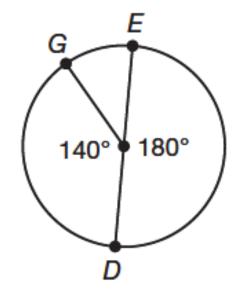
 $(42^{\circ} \cdot 5) - 180^{\circ} = 30^{\circ}.$

You Try!!!!!!

Draw a diagram of a circle, identifying a central angle, a minor arc, and a major arc.


Identify the measure of the minor arc.

You Try!!!!!!


The measure of \widehat{JK} is given by the expression 2x - 15, and the measure of \widehat{LM} is given by the expression x + 30. It is given that $\widehat{JK} \cong \widehat{LM}$. Determine the value of x and the measure of each arc.

Use the Arc Addition Postulate to write an expression that represents $m\widehat{AB}$.

You Try!!!!!!

Find $m\widehat{DEG}$.

Outdoor Lighting A lamp projects a beam of light over a 100° arc. How many lamps facing outward from the center of a circle would be needed to form a full circle of light at the center of a park? What would be the overlap of these beams?

Assignment

Page 165 Lesson Practice (Ask Mr. Heintz)

Page 166 Practice 1-30 (Do the starred ones first)