Geometry Lesson 27

Date: \qquad
Objective: TSW use a two-column proof.
Period: \qquad
In a proof, deductive reasoning is used to develop a logical argument from given information to prove a conclusion. Proofs in geometry must be done step by step, and each step must have a justification. These justifications can include the \qquad information, definitions, \qquad , theorems, and
\qquad , as seen in the two-column proofs in this lesson.

Example 1 Justifying Statements in a Two-Column Proof, Part 1

Fill in the justifying statements to support the proof of Theorem 4-2: If there is a line and a point not on the line, then exactly one plane contains them.

Given: Point C is not on $\overleftrightarrow{A B}$.

Prove: Exactly one plane contains $\overleftrightarrow{A B}$ and C.

Statements

Reasons

1. Point C is noncollinear with $\overleftrightarrow{A B}$. 1.
2. Exactly one plane contains points A, B, and C.
3. Exactly one plane contains $\overleftrightarrow{A B}$ and C.
4.
5.

Example 2 Justifying Statements in a Two-Column Proof, Part 2

Prove Theorem 6-1: If two angles are complementary to the same angle, then they are congruent.

Given: $\angle 1$ is complementary to $\angle 2 . \angle 3$ is complementary to $\angle 2$.
Prove: $\angle 1 \cong \angle 3$

Statements
Reasons

1. $\angle 1$ is complementary to $\angle 2$. $\angle 3$ is complementary to $\angle 2$.
2. Given
3. $m \angle 1+m \angle 2=90^{\circ}$
$m \angle 3+m \angle 2=90^{\circ}$
4. $m \angle 1+m \angle 2=m \angle 3+m \angle 2$
5.
6. $m \angle 1+m \angle 2-m \angle 2=m \angle 3+m \angle 2-m \angle 2$

4
5. $m \angle 1=m \angle 3$
5.
6. $\angle 1 \cong \angle 3$
6.

Two-column proofs have a format that is composed of five parts.

1. \qquad statement(s): The information that is provided.
2. \qquad statement: The statement indicating what is to be proved.
3. \qquad : A sketch that summarizes the provided information. Sometimes you will need to draw the sketch yourself based on given information.
4. \qquad : The specific steps that are written in the left-hand column.
5. \qquad : Postulates, theorems, definitions, or properties written in the right-hand column, which justify each statement.

Example 3 Writing a Two-Column Proof, Part 1
Prove Theorem 6-4: If two angles are vertical angles, then they are congruent. (Vertical Angles Theorem)
Given: $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$ intersect at point C
Prove: $\angle A C D \cong \angle B C E$
SOLUTION
Proof:

Statements
1.
2.
3.
4.
5.
6.

Reasons
1.
2.
3.
4.
5.
6.

Example 4 Writing a Two-Column Proof, Part 2
Prove Theorem 5-3: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one.

Given: $\overleftrightarrow{A D} \| \overleftrightarrow{B C}$ and $\overleftrightarrow{E B} \perp \overleftrightarrow{A D}$
Prove: $\overleftrightarrow{E B} \perp \overleftrightarrow{B C}$
SOLUTION
Proof:
Statements
1.

Reasons
1.

2.
3.
4.
2.
3.
4.
5.
5.
6.
6.

You Try!!!!!

a. If a triangle is obtuse, what can you conclude about the measures of its two non-obtuse angles? Justify your answer.
b. Fill in the reasons of the proof of Theorem 5-5: If two lines form congruent adjacent angles, then they are perpendicular.
Given: $\angle L N M \cong \angle L N P$
Prove: $L N \perp M P$
Statements
Reasons

1. $\angle L N M_{-} \angle L N P$
2.
3.
4.
5. $\mathrm{m} \angle M N P=180^{\circ}$
6. $\mathrm{m} \angle L N M=\mathrm{m} \angle L N P$
r
.
7.
8. $2 \mathrm{~m} \angle L N M=180^{\circ}$
9.
10. $\mathrm{m} \angle L N M=90^{\circ}$
11.
12. $L N \perp M P$
13.

c. Given $\triangle \mathrm{ABC}$ with exterior angle $\angle \mathrm{ACD}$, write a two-column proof to prove the Exterior Angle Theorem.
Given: $\angle A C D$ is an exterior angle of $\triangle A B C$
Prove: $m \angle A C D=m \angle C A B+m \angle A B C$
1.

2.
3.
4.
5.
6.

