		N	lame:	
Geometry Lesson 27 Objective: TSW use a two-column proof.		D	Date:	
		Period:		
In a proof, deductive reasoning is used to develop Proofs in geometry must be done step by step, an the information, definition , as seen in the two-co	nd each step i s,	must have a justifica	ation. These justification	
Example 1 Justifying Statements in a Two-Column	Proof Part 1			
Fill in the justifying statements to support the pro			ne and a noint	
not on the line, then exactly one plane contains the				<u> </u>
Given: Point <i>C</i> is not on \overrightarrow{AB} .	nem.		A	•c
Prove: Exactly one plane contains \overrightarrow{AB} and C.				
Statements		Reasons		
1. Point <i>C</i> is noncollinear with \overleftarrow{AB} .	1.	Reasons		
2. Exactly one plane contains points <i>A</i> , <i>B</i> , and <i>C</i> .	2.			
3. Exactly one plane contains \overrightarrow{AB} and C .	3.			
Example 2 Justifying Statements in a Two-Column	n Proof, Part 2	!	7	
Prove Theorem 6-1: If two angles are complemen	tary to the sa	me angle, then the	y are 1	↑
congruent.			\rightarrow	2 1
Given: $\angle 1$ is complementary to $\angle 2$. $\angle 3$ is complementary to $\angle 2$.	nplementary	to ∠2.	3	~
Prove: $\angle 1 \cong \angle 3$			×	
Statements		Reasons		
1. $\angle 1$ is complementary to $\angle 2$.				
$\angle 3$ is complementary to $\angle 2$.	1. Giv	en		
2. m∠1 + m∠2 = 90°				
m∠3 + m∠2 = 90°	2.			
3. m∠1 + m∠2 = m∠3 + m∠2	3.			
4. m∠1 + m∠2 - m∠2 = m∠3 + m∠2 - m∠2	4.			
5. m∠1 = m∠3	5.			
$6, \angle 1 \cong \angle 3$	6.			

1

Two-column proofs have a format that is composed of five parts.

1. ______ statement(s): The information that is provided.

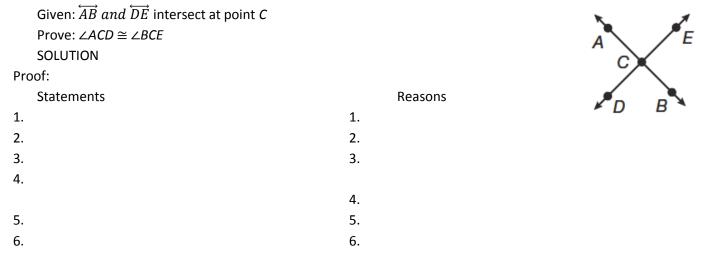
2. ______ statement: The statement indicating what is to be proved.

3. _____: A sketch that summarizes the provided information. Sometimes you will need to draw the sketch yourself based on given information.

- 4. _____: The specific steps that are written in the left-hand column.
- 5. _____: Postulates, theorems, definitions, or properties written in the right-hand column, which justify each statement.

Example 3 Writing a Two-Column Proof, Part 1

Prove Theorem 6-4: If two angles are vertical angles, then they are congruent. (Vertical Angles Theorem)



Example 4 Writing a Two-Column Proof, Part 2

Prove Theorem 5-3: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one.

Given: $\overrightarrow{AD} \parallel \overrightarrow{BC} and \overrightarrow{EB} \perp \overrightarrow{AD}$		↓ E
Prove: $\overrightarrow{EB} \perp \overrightarrow{BC}$		
SOLUTION		
Proof:		
Statements	Reasons	$\xrightarrow{B} C^{\bullet}$
1.	1.	₹ <i>F</i>
2.	2.	
3.	3.	
4.	4.	
5.	5.	
6.	6.	

You Try!!!!!

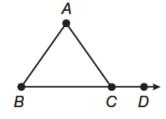
a. If a triangle is obtuse, what can you conclude about the measures of its two non-obtuse angles? Justify your answer.

b.	Fill in the reasons of the proof of Theorem 5-5: If two lines form congruent adjacent
	angles, then they are perpendicular.
Gi	ven: $\angle LNM \cong \angle LNP$

Prove: $LN \perp MP$		
Statements		Reasons
$1. \angle LNM _ \angle LNP$	1.	
2. m∠ <i>LNM</i> = m∠ <i>LNP</i>	2.	
3. m∠ <i>MNP</i> = 180°	3.	
4. m∠ <i>LNM</i> + m∠ <i>LNP</i> = m∠ <i>MNP</i>	4.	
5. 2m <i>∠LNM</i> = 180°	5.	
6. m∠ <i>LNM</i> = 90°	6.	
7. $LN \perp MP$	7.	

c. Given $\triangle ABC$ with exterior angle $\angle ACD$, write a two-column proof to prove the Exterior Angle Theorem.

Given: $\angle ACD$ is an exterior angle of $\triangle ABC$ Prove: $m \angle ACD = m \angle CAB + m \angle ABC$



- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

ΝP

Μ