Lesson 27

Two-Column Proofs

In a proof, deductive reasoning is used to develop a logical argument from given information to prove a conclusion. Proofs in geometry must be done step by step, and each step must have a justification. These justifications can include the given information, definitions, postulates, theorems, and properties, as seen in the two-column proofs in this lesson.

Example 1 Justifying Statements in a Two-Column Proof, Part 1

Fill in the justifying statements to support the proof of Theorem 4-2: If there is a line and a point not on the line, then exactly one plane contains them.
Given: Point C is not on $\overleftrightarrow{A B}$.
Prove: Exactly one plane contains $\overleftrightarrow{A B}$ and C.

Example 1 Justifying Statements in a Two-Column Proof, Part 1

Statements

1. Point C is
noncollinear with $\overleftrightarrow{A B}$.
2. Exactly one plane contains points A, B, and C.
3. Exactly one plane contains $\overparen{A B}$ and C.

Reasons

1. Given
2. Through any three noncollinear points there exists exactly one plane. (Postulate 6)
3. If two points lie in a plane, then the line containing the points lies in the plane.
(Postulate 8)

Example 2 Justifying Statements in a Two-Column Proof, Part 2

Prove Theorem 6-1: If two angles are complementary to the same angle, then they are congruent.
Given: $\angle 1$ is complementary to $\angle 2 . \angle 3$ is complementary to $\angle 2$.
Prove: $\angle 1 \cong \angle 3$

Example 2 Justifying Statements in a Two-Column Proof, Part 2

Statements

1. $\angle 1$ is complementary to $\angle 2$. $\angle 3$ is complementary to $\angle 2$.
2. $m \angle 1+m \angle 2=90^{\circ}$ $\mathrm{m} \angle 3+\mathrm{m} \angle 2=90^{\circ}$
3. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 3+\mathrm{m} \angle 2$
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2-\mathrm{m} \angle 2=\mathrm{m} \angle 3+$ $\mathrm{m} \angle 2-\mathrm{m} \angle 2$
5. $m \angle 1=m \angle 3$
6. $\angle 1 \cong \angle 3$

Reasons

1. Given
2. Definition of complementary angles
3. Substitution Property of Equality
4. Subtraction Property of Equality
5. Simplify
6. Definition of congruent angles

Two-column proofs have a format that is composed of five parts.

1. Given statement(s): The information that is provided.
2. Prove statement: The statement indicating what is to be proved.
3. Diagram: A sketch that summarizes the provided information. Sometimes you will need to draw the sketch yourself based on given information.
4. Statements: The specific steps that are written in the left-hand column.
5. Reasons: Postulates, theorems, definitions, or properties written in the right-hand column, which justify each statement.

Example 3 Writing a Two-Column Proof, Part 1

Prove Theorem 6-4: If two angles are vertical angles, then they are congruent. (Vertical Angles Theorem)
Given: $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$ intersect at point C
Prove: $\angle A C D \cong \angle B C E$

SOLUTION
Statements

1. $\overleftrightarrow{A B}$ and $\overleftrightarrow{D E}$ intersect at point C
2. $\mathrm{m} \angle B C D+\mathrm{m} \angle A C D=180^{\circ}$
3. $\mathrm{m} \angle B C D+\mathrm{m} \angle B C E=180^{\circ}$
4. $\mathrm{m} \angle B C D+\mathrm{m} \angle A C D=$ $\mathrm{m} \angle B C D+\mathrm{m} \angle B C E$
5. $\mathrm{m} \angle A C D=\mathrm{m} \angle B C E$
6. $\angle A C D \cong \angle B C E$

Reasons

1. Given
2. Linear Pair Theorem
3. Linear Pair Theorem
4. Transitive Prop of Equality
5. Sub Prop of Equality
6. Def of congruent angles

Example 4 Writing a Two-Column Proof, Part 2

Prove Theorem 5-3: If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other one.
Given: $\overleftrightarrow{A D} \| \overleftrightarrow{B C}$ and $\overleftrightarrow{E B} \perp \overleftrightarrow{A D}$
Prove: $\overleftrightarrow{E B} \perp \overleftrightarrow{B C}$
SOLUTION
Statements
Reasons

1. $\overleftrightarrow{A D} \| \overleftrightarrow{B C}$
2. $\angle E A D \cong \angle A B C$
3. Given
. $\angle E A D \approx \angle A B C$
4. Postulate 11:
5. $\mathrm{m} \angle E A D=90^{\circ}$
6. $\mathrm{m} \angle A B C=\mathrm{m} \angle E A D$
7. $\mathrm{m} \angle A B C=90^{\circ}$
8. $\overleftrightarrow{E B} \perp \overleftrightarrow{B C}$

You Try!!!

a. If a triangle is obtuse, what can you conclude about the measures of its two non-obtuse angles? Justify your answer.
b. Fill in the reasons of the proof of Theorem 5-5: If two lines form congruent adjacent angles, then they are perpendicular.
Given: $\angle L N M \cong \angle L N P$
Prove: $L N \perp M P$

Statements

1. $\angle L N M_{-} \angle L N P$
2. $\mathrm{m} \angle L N M=\mathrm{m} \angle L N P$
3. $\mathrm{m} \angle M N P=180^{\circ}$
4. $\mathrm{m} \angle L N M+\mathrm{m} \angle L N P=\mathrm{m} \angle M N P$
5. $2 \mathrm{~m} \angle L N M=180^{\circ}$
6. $\mathrm{m} \angle L N M=90^{\circ}$
7. $L N \perp M P$

Reasons
1.
2.
3.
4.
5.
6.
7.

You Try!!!

c. Given $\triangle \mathrm{ABC}$ with exterior angle $\angle \mathrm{ACD}$, write a two-column proof to prove the Exterior Angle Theorem.
Given: $\angle A C D$ is an exterior angle of $\triangle \mathrm{ABC}$ Prove: $\mathrm{m} \angle \mathrm{ACD}=\mathrm{m} \angle \mathrm{CAB}+\mathrm{m} \angle \mathrm{ABC}$

Assignment

Page 172
Lesson Practice (Ask Mr. Heintz)
Page 172
Practice 1-30 (Do the starred ones first)

