Geometry Lesson 28

Date: \qquad
Objective: TSW show triangles are congruent using SAS.
Period: \qquad
\qquad Angle - The angle formed by two adjacent sides of a polygon.

Side - The common side of two consecutive angles of a polygon.

Example 1 Identifying Included Angles and Sides
What is the included side of $\angle A$ and $\angle B$? What is the included angle of $\overline{B C}$ and $\overline{C D}$?

Side-Angle-Side (SAS) Triangle Congruence Postulate - If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent by side-angle-side congruence.

Example 2 Using the SAS Postulate to Determine Congruency Determine whether the pair of triangles is congruent by the SAS Postulate.

Caution

In the SAS Postulate, the included angle is the angle that is formed by the two congruent sides. Remember that in the SAS Postulate, the A is between the two S^{\prime} 's, showing that the angle is between the two sides.

SOLUTION

Example 3 Finding Missing Angle Measures

Find the value of x that makes the triangles congruent.
SOLUTION

The triangle congruence postulates and theorems will be used as justifications in proofs. An example is given below.

Example 4 Using the SAS Postulate in a Proof
Triangles make an " X " design on this barn door. Use the SAS Postulate to write a twocolumn proof.

Given: $\overline{A B} \cong \overline{D C}$
Prove: $\triangle A B D \cong \triangle \mathrm{DCA}$

SOLUTION

1.
2.
3.
4.

Example 5 Application: Design

An artist is designing patterned wallpaper made of congruent triangles. He starts by drawing $\triangle A B C$, shown below. He wants to design a mirror image of $\triangle A B C$, shown as $\triangle E D C$ below. How can he make sure that this new triangle is congruent to $\triangle A B C$ using the SAS pattern of triangle congruence?

SOLUTION

You Try!!!!!

a. Determine whether the pair of triangles is congruent by the SAS Postulate.

b. Find the value of x that makes the triangles congruent.

c. Use the SAS Postulate to prove $\triangle W X Y \cong \triangle W Z Y$ if $\overline{W Z} \cong \overline{W X}$ and $\angle Z W Y \cong \angle X W Y$.

