## Lesson 29

## Using the Pythagorean Theorem

Pythagorean Triples - A Pythagorean triple is a set of three nonzero whole numbers $a, b$, and $c$ such that:

$$
a^{2}+b^{2}=c^{2}
$$

Two of the most well-known sets of Pythagorean triples are $(3,4,5)$ and $(5,12,13)$. An easy way to find Pythagorean triples is to multiply one of these two sets by a whole number.

## Example 1 Finding Pythagorean

 TriplesFind the unknown length in the triangle. Do the side lengths form a Pythagorean triple? SOLUTION

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
15^{2}+20^{2} & =x^{2} \\
225+400 & =x^{2} \\
625 & =x^{2} \\
\sqrt{625} & =\sqrt{x^{2}} \\
25 & =x
\end{aligned}
$$



Therefore, the length of the hypotenuse is 25 centimeters. The set ( $15,20,25$ ), which gives the side lengths of this triangle, is the Pythagorean triple (3, 4, 5) multiplied by 5 .

# Example 2 Using Pythagorean Triples To Find the Legs 

Find the unknown length in the triangle.
Do the side lengths form a Pythagorean triple? SOLUTION

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
24^{2}+x^{2} & =26^{2} \\
576+x^{2} & =676 \quad 24 \text { in. } \\
x^{2} & =100 \\
\sqrt{x^{2}} & =\sqrt{100} \\
x & =10
\end{aligned}
$$



The set which gives the side lengths of this triangle ( $10,24,26$ ), is the Pythagorean triple (5, 12,13 ) multiplied by 2.

However, not all right triangles are composed of side lengths that are nonzero whole numbers. In such cases, one or more side lengths may be written as a radical expression.

Radical Expression - Any expression that contains a root. Typically, a radical expression should be reduced to simplified radical form.

## Example 3 Simplifying Radicals

a. Find the value of $x$. Give your answer in simplified radical form. SOLUTION

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
6^{2}+12^{2} & =x^{2} \\
36+144 & =x^{2} \\
180 & =x^{2} \\
\sqrt{180} & =\sqrt{x^{2}}
\end{aligned}
$$



To write the answer in simplified radical form, you must factor out all perfect square factors of the number under the radical sign. The largest perfect square that is a factor of 180 is 36 , so 180 is factored out as $36 \times 5$.

$$
\begin{gathered}
\sqrt{36 \cdot 5}=x \\
6 \sqrt{5}=x
\end{gathered}
$$

Therefore, the length of the hypotenuse is $6 \sqrt{5} \mathrm{~m}$.

## Example 3 Simplifying Radicals

b. Find the value of $x$. Give your answer in simplified radical form. SOLUTION

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
5^{2}+x^{2}=10^{2} \\
25+x^{2}=100 \\
x^{2}=75 \\
\sqrt{x^{2}}=\sqrt{75} \\
x=5 \sqrt{3}
\end{gathered}
$$



Therefore, the length of the second leg is $5 \sqrt{3}$ feet.

## Example 4 Application: TV Aspect

## Ratios

The aspect ratio of a TV screen is the ratio of the width to the height of the image. Find the height and the width of a 42 -inch TV screen with an aspect ratio of $4: 3$ to the nearest tenth of an inch. The length 42 inches refers to the diagonal distance across the screen.

## SOLUTION

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(3 x)^{2}+(4 x)^{2}=42^{2} \\
9 x^{2}+16 x^{2}=42^{2} \\
25 x^{2}=42^{2} \\
x^{2}=\frac{42^{2}}{25} \\
x=\frac{42}{5}=8.4
\end{gathered}
$$

## Example 4 Application: TV Aspect Ratios

Width: $=4 x$
$=4$ (8.4)
$=33.6$ inches
Height: $=3 x$
$=3$ (8.4)
$=25.2$ inches
Check

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(33.6)^{2}+(25.2)^{2}=c^{2} \\
42=c
\end{gathered}
$$

## You Try!!!!

a.Find the hypotenuse of the triangle. Do the side lengths form a Pythagorean triple?

b.Find the value of $p$ in the triangle at right. Do the side lengths form a Pythagorean triple?


## You Try!!!!

c. Find the value of $s$ in the triangle at right. Give your answer in simplified radical form.

d.Find the value of $y$ in the triangle at right. Give your answer in simplified radical form.

## You Try!!!!

e.A ratio of a TV's width to its height is 16:9. If its width is 32 inches, what is the length of its diagonal?

## Assignment

Page 184
Lesson Practice (Ask Mr. Heintz)

Page 184
Practice 1-30 (Do the starred ones first)

