Lesson 30 Triangle Congruence: ASA and AAS

Postulate 16: Angle-Side-Angle (ASA) Congruence Postulate – If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Example 1 Using the ASA Postulate

Use ASA congruence to determine the measure of the sides of ΔDEF .

SOLUTION

Since two angles and the included side of ΔBAC are congruent to two angles and the included side of ΔDEF , by the ASA Postulate, $\Delta BAC \cong$ ΔDEF . Therefore, since

 $\overline{AC} \cong \overline{EF}, EF = 6$ $\overline{CB} \cong \overline{FD}, FD = 17$ $\overline{AB} \cong \overline{ED}, ED = 18$

Example 2 Using the ASA Postulate in a Proof

Prove that $\Delta SWT \cong \Delta UVT$, given that *T* is the midpoint of \overline{WV} and $\overline{VU} \parallel \overline{WS}$.

SOLUTION

- 1. *T* is the midpoint of \overline{WV}
- 2. $\overline{WT} \cong \overline{VT}$

3. $\angle SWT \cong \angle TVU$

4. $\angle WTS \cong \angle VTU$ 5. $\triangle SWT \cong \triangle UVT$

- 1. Given
- 2. Def of midpoint
- 3. If two parallel lines are cut by a transversal, then alternate interior angles are congruent.
- 4. Vertical angles
- 5. ASA Cong Postulate

Theorem 30–1: Angle–Angle–Side (AAS) Triangle Congruence Theorem – If two angles and a non–included side of one triangle are congruent to two angles and the corresponding non–included side of another triangle, then the triangles are congruent.

Example 3 Using the AAS Congruence Theorem

Given that $\overline{DE} \cong \overline{LK}$, find the area of each triangle shown below. SOLUTION

Since two angles and a non-included side of ΔDEF are congruent to the corresponding angles and non-included side of ΔLKM , $\Delta DEF \cong \Delta LKM$ by the AAS Congruence Theorem.

Therefore, solve for x using CPCTC: EF = KM

Therefore, the area of each triangle is 30 square units.

Example 4 Using the AAS Theorem in a Proof

Given: \overline{BD} bisects $\angle ADC$ and $\angle A \cong \angle C$. Prove: $\triangle ABD \cong \triangle CBD$ SOLUTION

Statements

1. $\angle A \cong \angle C$

2. ∠*ADB* \cong ∠*CDB*

 $3.\overline{DB}\cong\overline{DB}$

4. $\triangle ABD \cong \triangle CBD$

Reasons

- 1. Given
- 2. Def of angle bisector
- 3. Reflexive Prop
- 4. AAS Theorem

Example 5 Application: Bridges

A diagram of a portion of the truss system of a new bridge is shown below. Prove $\triangle ABC \cong \triangle DCB$. **SOLUTION Statements** Reasons **1.** $\overline{BD} \parallel \overline{AC}$ 1. Given $\overline{AB} \parallel \overline{CD}$ 2. If parallel lines are cut by a transversal, then alternate interior 2. $\angle DBC \cong \angle ACB$ angles are congruent (Theorem 10–1). 3. $\angle ABC \cong \angle DCB$ 3. Theorem 10–1 $4.\overline{BC} \cong \overline{BC}$ 4. Reflexive Property of Congruence 5. ASA Theorem 5. $\triangle ABC \cong \triangle DCB$

You Try!!!

a. State the postulate that can be used to prove the triangles congruent, and state the measure of the sides of ΔDEF .

You Try!!!

c. If the two triangles are congruent by the AAS Theorem, what is the area of each triangle?

You Try!!!

d. Prove that $\triangle ADC \cong BDC$.

Assignment

Page 190 Lesson Practice (Ask Mr. Heintz)

Page 191 Practice 1-30 (Do the starred ones first)