Lesson 30

Triangle Congruence: ASA and AAS

Postulate 16: Angle-Side-Angle (ASA)
Congruence Postulate - If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Example 1 Using the ASA Postulate

Use ASA congruence to determine the measure of the sides of $\triangle D E F$.
SOLUTION
Since two angles and the included side of $\triangle B A C$ are congruent to two angles and the included side of $\triangle D E F$, by the ASA Postulate, $\triangle B A C \cong$ $\triangle D E F$. Therefore, since

$$
\begin{aligned}
& \overline{A C} \cong \overline{E F}, E F=6 \\
& \overline{C B} \cong \overline{F D}, F D=17 \\
& \overline{A B} \cong \overline{E D}, E D=18
\end{aligned}
$$

Example 2 Using the ASA Postulate in a Proof

Prove that $\Delta S W T \cong \Delta U V T$, given that T is the midpoint of $\overline{W V}$ and $\overline{V U} \| \overline{W S}$.
SOLUTION

1. T is the midpoint of $\overline{W V}$
2. $\overline{W T} \cong \overline{V T}$
3. $\angle S W T \cong \angle T V U$
4. $\angle W T S \cong \angle V T U$
5. $\Delta S W T \cong \triangle U V T$
6. Given
7. Def of midpoint
8. If two parallel lines are cut by a transversal, then alternate interior angles are congruent.
9. Vertical angles
10. ASA Cong Postulate

Theorem 30-1: Angle-Angle-Side (AAS) Triangle Congruence Theorem - If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of another triangle, then the triangles are congruent.

Example 3 Using the AAS Congruence Theorem

Given that $\overline{D E} \cong \overline{L K}$, find the area of each triangle shown below. SOLUTION
Since two angles and a non-included side of $\triangle D E F$ are congruent to the corresponding angles and non-included side of $\triangle L K M$, $\triangle D E F \cong \triangle L K M$ by the AAS Congruence Theorem.
Therefore, solve for x using CPCTC: $E F=K M$
$4 x-2=3 x+1$
$x=3$
$\mathrm{EF}=4 \cdot 3-2=10$
$A=\frac{1}{2} b h$
$A=\frac{1}{2} 10 \cdot 6$
$A=30$

Therefore, the area of each triangle is 30 square units.

Example 4 Using the AAS Theorem in a Proof

Given: $\overline{B D}$ bisects $\angle A D C$ and $\angle A \cong \angle C$.
Prove: $\triangle A B D \cong \triangle C B D$
SOLUTION
Statements
Reasons

1. $\angle A \cong \angle C$
2. $\angle A D B \cong \angle C D B$
3. $\overline{D B} \cong \overline{D B}$
4. $\triangle A B D \cong \triangle C B D$
5. Given
6. Def of angle bisector
7. Reflexive Prop
8. AAS Theorem

Example 5 Application: Bridges

A diagram of a portion of the truss system of a new bridge is shown below. Prove $\triangle A B C \cong \triangle D C B$. SOLUTION
Statements Reasons

1. $\overline{B D} \| \overline{A C}$
$\overline{A B} \| \overline{C D}$
2. $\angle D B C \cong \angle A C B$
3. If parallel lines are cut by a transversal, then alternate interior angles are congruent
(Theorem 10-1).
4. $\angle A B C \cong \angle D C B$
5. Theorem 10-1
6. $\overline{B C} \cong \overline{B C}$
7. $\triangle A B C \cong \triangle D C B$
8. Reflexive Property of Congruence
9. ASA Theorem

You Try!!!

a. State the postulate that can be used to prove the triangles congruent, and state the measure of the sides of $\triangle D E F$.

You Try!!!

c. If the two triangles are congruent by the AAS Theorem, what is the area of each triangle?

You Try!!!

d. Prove that $\triangle A D C \cong B D C$.

Assignment

Page 190
Lesson Practice (Ask Mr. Heintz)
Page 191
Practice 1-30 (Do the starred ones first)

