Lesson 35

Finding Arc Lengths and Areas of Sectors

Arc Length - To find the length of an arc, use this formula, where m is the degree measure of the arc.

$$
L=2 \pi r\left(\frac{m^{\circ}}{360^{\circ}}\right)
$$

Example 1 Finding Arc Length

Find each arc length. Give your answer in terms of π.
a. Find the length of $\widehat{X Y}$.

SOLUTION
$L=2 \pi r\left(\frac{m^{\circ}}{360^{\circ}}\right)$
$L=2 \pi(15)\left(\frac{60^{\circ}}{360^{\circ}}\right)$
$L=5 \pi \mathrm{~cm}$

Example 1 Finding Arc Length

Find each arc length. Give your answer in terms of π.
b. Find the length of an arc with a measure of 75° in a circle with a radius of 4 feet.

SOLUTION

$$
\begin{gathered}
L=2 \pi r\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
L=2 \pi 4\left(\frac{75^{\circ}}{360^{\circ}}\right) \\
L=\frac{5}{3} \pi f t
\end{gathered}
$$

Sector of a Circle - The region inside a circle bounded by two radii of the circle and their intercepted arc.
Area of a Sector - To find the area of a sector (A), use the following formula, where r is the circle's radius and m is the central angle measure:

$$
A=\pi r^{2}\left(\frac{m^{\circ}}{360^{\circ}}\right)
$$

Example 2 Finding the Area of a Sector

Find the area of each sector. Give your answer in terms of π.
a. Find the area of sector XOY. SOLUTION

$$
\begin{gathered}
A=\pi r^{2}\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
A=\pi 12^{2}\left(\frac{95^{\circ}}{360^{\circ}}\right) \\
A=38 \pi i n^{2}
\end{gathered}
$$

Example 2 Finding the Area of a Sector

Find the area of each sector. Give your answer in terms of π.
b. Find the area of a sector with an arc that measures 174° in a circle with a radius of 13 meters.

$$
\begin{aligned}
A & =\pi r^{2}\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
A & =\pi(13)^{2}\left(\frac{174^{\circ}}{360^{\circ}}\right) \\
A & =\frac{4901}{60} \pi m^{2}
\end{aligned}
$$

Example 3 Solving for Unknown Radius

Find the radius of the circle to the nearest hundredth of a meter.
SOLUTION
Substitute the known measures into the formula for the area of a sector, then solve for r.

$$
\begin{gathered}
A=\pi r^{2}\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
100=\pi r^{2}\left(\frac{246^{\circ}}{360^{\circ}}\right) \\
\frac{110 \cdot 360}{246 \pi}=r^{2}
\end{gathered}
$$

$r \approx 6.83 \mathrm{~m}$

Example 4 Solving for Unknown Central Angle

Find the central angle measure of $\widehat{R S}$ to the nearest hundredth of a degree, if the length of the arc is 12 centimeters. SOLUTION

$$
\begin{aligned}
L & =2 \pi r\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
12 & =2 \pi(14)\left(\frac{m^{\circ}}{360^{\circ}}\right)
\end{aligned}
$$

$$
12 \cdot 360
$$

$m^{\circ} \approx 49.11^{\circ}$

$$
\frac{12 \cdot 360}{2 \cdot 14 \cdot \pi}=m^{\circ}
$$

Example 5 Application: Farming \backslash

A spray irrigation system has a radius of 150 feet. If it rotates through a 175° central angle, what is the area that the system covers? Round your answer to the nearest square foot. SOLUTION

$$
\begin{aligned}
A & =\pi r^{2}\left(\frac{m^{\circ}}{360^{\circ}}\right) \\
A & =\pi 150^{2}\left(\frac{175^{\circ}}{360^{\circ}}\right) \\
A & \approx 34361 \mathrm{ft}^{2}
\end{aligned}
$$

You Try!!!
a.Find the length of an arc with a measure of 125° in a circle and 12 -mile radius. Round to the nearest hundredth of a mile.
c. Find the radius to the nearest hundredth of a centimeter.

Assignment

Page 226
Lesson Practice (Ask Mr. Heintz)

Page 227
Practice 1-30 (Do the starred ones first)

