Geometry Lesson 37

Date: \qquad
Objective: TSW write equations of parallel and perpendicular lines.
Period: \qquad
The coordinate plane provides a connection between algebra and geometry. Postulates 17 and 18 establish a simple way to find lines that are parallel or perpendicular on the coordinate plane.

Postulate 17: Parallel Lines Postulate - If two lines are parallel, then they have the same slope. All vertical lines are parallel to each other.

Perpendicular lines can also be found by looking at the \qquad .

Postulate 18: Perpendicular Lines Postulate - If two nonvertical lines are perpendicular, then the product of their slopes is -1. Vertical and horizontal lines are perpendicular to each other.

Reciprocal - The reciprocal of that number with the sign reversed.

Whenever two lines have slopes that are opposite reciprocals of each other, they are
\qquad lines.

$$
m_{1} \times m_{2}=\frac{-3}{2} \cdot \frac{2}{3}=-1
$$

Example 1 Finding the Slopes of Parallel and Perpendicular Lines
a. Find the slope of line a.

SOLUTION

b. Find the slope of a line parallel to line a.

SOLUTION
c. Find the slope of a line perpendicular to line a.

SOLUTION

Example 2 Identifying Parallel and Perpendicular Lines
a. Are the lines $y=2 x+4$ and $y=-3+2 x$ parallel, perpendicular, or neither?

SOLUTION
b. Are the lines $y=\frac{2}{3} x-1$ and $y=\frac{3}{2} x$ parallel, perpendicular, or neither?

SOLUTION

The point-slope formula for a line \qquad . Sometimes it is helpful to find a line passing through a given point that is parallel or perpendicular to another line. The point-slope formula can be used to solve problems like this, once you have discovered the slope of the parallel or perpendicular line.

Example 3 Graphing a Line Parallel to a Given Line
a. Find a line that is parallel to $y=x+2$ and passes through point $(3,8)$. SOLUTION
b. Graph the parallel lines from part a.

SOLUTION

Example 4 Graphing a Line Perpendicular to a Given Line
a. Find a line that is perpendicular to $y=\frac{2}{3} x$ and passes through the point $(2,4)$. SOLUTION
b. Graph the perpendicular lines from part a.

SOLUTION

Example 5 Application: Swimming
In a race, one swimmer is swimming at a rate of 21 meters per second. Another swimmer gets a 5-meter head start, and also swims at 21 meters per second. What is the equation that will model the distance, y, that each swimmer has gone after x seconds? Will the first swimmer ever catch up to the second? SOLUTION

You Try!!

a. Find the slopes of lines that are parallel and perpendicular to line v.
d. Find and graph a line that is parallel to $y=-2 x+7$ and passes through the origin.

e. Find and graph a line that is perpendicular to $y=-\frac{4}{3} x+3$ and passes through the point $(2,3)$.

