Geometry Lesson 38

Date: \qquad
Objective: TSW use perpendicular and angle bisectors of triangles.
Period: \qquad
An angle \qquad divides an angle into two congruent angles.
\qquad of the Triangle - The point of concurrency when all three angles of a triangle are bisected.

The \qquad of the triangle is equidistant from all of the sides of the triangle.

Example 1 Finding an Incenter in the Coordinate Plane
Use a compass and a straightedge to find the incenter of a triangle whose vertices are at $(-2,1),(1,2)$, and $(2,-2)$ in a coordinate plane.
SOLUTION

Hint

Refer to Construction
Lab 3 to see how to construct an angle bisector.

Theorem 38-1: Triangle Angle Bisector Theorem - If a line bisects an angle of a triangle, then it divides the opposite side proportionally to the other two sides of the triangle. In the diagram, $\frac{P M}{P O}=\frac{N M}{N O}$.

Example 2 Using the Triangle Angle Bisector Theorem
Using the diagram at the right, find $B C$ if $A D=15, D C=8$, and $A B=20$.
SOLUTION

In addition to finding the \qquad of a triangle, angle bisectors can also be used to find the lengths of segments in the triangle. When an angle bisector intersects the side of a triangle, it makes a \qquad relationship, given by Theorem 38-1.
\qquad of the Triangle - The point of concurrency when perpendicular bisectors are drawn for every side of a triangle. The circumcenter of a triangle is \qquad from every vertex in the triangle. In the diagram below, point P is the circumcenter of the triangle, so \qquad $=$ \qquad .

Math Language

The circumcenter, orthocenter, and centroid of a triangle will always be collinear. The line that all three points lie on is known as the Euler Line.

The circumcenter is not always \qquad a triangle. A right triangle's circumcenter lies on the , and an obtuse triangle's circumcenter is outside the triangle.
\qquad Circle - Any circle that contains all the vertices of a polygon.

The circumcenter lies at the center of the circle that contains the three vertices of the triangle.

Example 3 Finding a Circumcenter in the Coordinate Plane

Find the circumcenter of a triangle with vertices at $A(2,2), B(8,2)$, and $C(4,7)$.
SOLUTION

Example 4 Application: City Planning

A gas company has three gas stations located at points $R(2,8), S(6,2)$, and $T(2$, $2)$, as shown. The storage facility is equidistant from the three gas stations. Find the location of the storage facility.

SOLUTION

You Try!!!!!

a. Use a compass and a straightedge to find the incenter of a triangle whose vertices are at $(-3,1),(3,-2)$, and $(2,4)$ in a coordinate plane.

b. Using the diagram at the right, find the length of $\overline{T U} T U$ if $U V=4, T W=10$, and $W V=6$.

d. A restaurant owner wants to place his new restaurant equidistant from three nearby grocery stores that will supply him. They are located at $A(0,0), B(4,0)$ and $C(0,6)$. Where should he place his restaurant?

