Geometry Lesson 39

Date: \qquad
Objective: TSW find inequalities in a triangle.
Period: \qquad
Theorem 39-1 - If one side of a triangle is longer than another side, then the angle opposite the first side is larger than the angle opposite the second side.

Theorem 39-2 - If one angle of a triangle is larger than another angle, then the side opposite the first angle is longer than the side opposite the second angle.

In other words, a triangle's largest side is always opposite its largest angle, and it smallest side is always opposite its smallest angle.

Example 1 Ordering Triangle Side Lengths and Angle Measures a. Order the side lengths in $\triangle A B C$ from least to greatest. SOLUTION

Math Reasoning

Predict Using Theorems 39-1 and 39-2, what can you say about the angle measures of an isosceles triangle?... of an equilateral triangle?
b. Order the measures of the angles in $\triangle X Y Z$ from least to greatest. SOLUTION

Recall from Lesson 18 that the measure of the exterior angle of a triangle is equal to the sum of the two remote interior angles. This result leads to the Exterior Angle Inequality Theorem.

Theorem 39-3: Exterior Angle Inequality Theorem - The measure of an exterior angle is greater than the measure of either remote interior angle.

Example 2 Proving The External Angle Inequality Theorem
In the given triangle, the exterior angle is labeled as x. Prove that x is greater than the measures of $\angle B$ or $\angle C$.

SOLUTION

It is not true that any three line segments can make a triangle. Only line segments of certain lengths can form the three sides needed for a triangle. The requirements are given in the Triangle Inequality Theorem.

Theorem 39-4: Triangle Inequality Theorem - The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

For example, a triangle could not have side lengths of 3,5 , and 9 because the sum of 3 and 5 is less than 9 .

Example 3 Applying the Triangle Inequality Theorem
a. Decide if each set of side lengths could form a valid triangle: $(3,4,5),(5,11,6)$, and $(1,9,5)$.

SOLUTION
b. Find the range of values for x in the given triangle.

SOLUTION

Example 4 Application: Planning a Trip
Simone took a flight from Atlanta to London (a distance of 4281 miles), then flew from London to New York City (a distance of 3470 miles), and then took a flight back to Atlanta. Assuming that all three trips are straight lines, determine the range of distances (from least to greatest) she could have traveled altogether.

SOLUTION

You Try!!!!!!

a. Order the side lengths in $\triangle D E F$ from least to greatest.

b. Order the measures of the angles in $\triangle P Q R$ from least to greatest.

c. Show that in the triangle, the measure of the exterior angle at vertex Z is greater than the angle measure at vertex X or at vertex Y.
d. Find the range of values for x in the given triangle.

