Geometry Lesson 42

Date: \qquad
Objective: TSW find the distance from a point to a line.
Period: \qquad
Given a line $\overleftrightarrow{A B}$ and a point P, what is the shortest distance between P and $\overleftrightarrow{A B}$? Notice that $\triangle A B P$ is a \qquad triangle, and $\overline{A P}$ is the hypotenuse. The hypotenuse is always the longest side of a right triangle, so $\overline{A P}$ must be \qquad than $\overline{P B}$.

Example 1 Choosing the Closest Point
Which point on the line $y=0$ is closest to point $D-L(3.6,0), M(4,0)$, or $N(4.25,0)$?

Theorem 42-1 - Through a line and a point not on the line, there exists exactly one perpendicular line to the given line.

Theorem 42-2 - The perpendicular segment from a point to a line is the shortest segment from the point to the line.

Theorem 42-1 indicates that there is only one such segment. The length of a perpendicular segment from a point to a line is referred to as the distance from a point to a line.

Example 2 Finding Distance to a Line
a. Find the distance from $P(6,4)$ to the line $y=1$.

SOLUTION

Example 3 Finding the Closest Point on a Line to a Point Given the equation $y=2 x+1$ and the point $S(3,2)$, find the point on the line that is closest to S. Find the shortest distance from S to the line.

SOLUTION

Theorem 42-3 - The perpendicular segment from a point to a plane is the shortest segment from the point to the plane.

Because parallel lines are always the same distance from one another, the distance from any point on a line to a line that is parallel is the same, regardless of which point you pick.

Theorem 42-4 - If two lines are parallel, then all points on one line are equidistant from the other line.

Example 4 Proving All Points on Parallel Lines are Equidistant Prove that if two lines are parallel, then all the points on one line are equidistant from the other line.
Given: $m / / n$
Prove: $\overline{A C} \cong \overline{D B}$

SOLUTION
Draw a diagram like the one above, with two parallel lines cut by a transversal. Draw two perpendicular segments from the endpoints of the transversal to the opposite parallel line, forming $\triangle A B C$ and $\triangle D C B$. To prove Theorem 424 , we need to show that points A and C are the same distance apart as points B and D, or that $\overline{A C} \cong \overline{D B}$.

Statements
Reasons
1.
2.
3.
4.
5.
6.

Example 5 Application: Delivery Routes

A pizza restaurant only delivers to customers who are less than 3 miles away. The restaurant, located at the origin, receives a call from a customer who lives at the closest point to the restaurant on 5th Street, which can be represented by the line $y=-2 x+3$. If each unit on a coordinate plane represents 1 mile, does this customer live close enough for delivery?

SOLUTION

You Try!!!!!
a. Find the distance between the line $y=6$ and $(-3,-5)$.
b. Find the distance between the line $x=9$ and $(-3,-5)$.
d. Find the closest point on the line $y=3 x-1$ to (5, 4).

