Lesson 47

Circles and Inscribed Angles

Lessons 23 and 26 introduce circles. This lesson also addresses circles and introduces inscribed angles of circles. Recall that a central angle is an angle with the center of a circle as its vertex. Another kind of angle found in circles is the inscribed angle.

Inscribed Angle - An angle whose vertex is on a circle and whose sides contain chords of the circle. In the diagram, $\angle A B C$ is an inscribed angle.

Intercepted Arc - The arc formed by an inscribed angle. In the diagram, $\widehat{A C}$ is the intercepted arc of $\angle A B C$.

Theorem 47-1 - The measure of an inscribed angle is equal to half the measure of its intercepted arc.

$$
m \angle P R Q=\left(\frac{1}{2}\right) m \widehat{P Q}
$$

Theorem 47-2 - If an inscribed angle intercepts a semicircle, then it is a right angle. $\angle D E F$ intersects the semicircle, so $\mathrm{m} \angle D E F=$ 90°.

Example 1 Proving and Applying Inscribed Angle Theorems

Use $\odot M$ to answer each question. a. Name the inscribed angle. SOLUTION
The inscribed angle is $\angle J K L$.

Example 1 Proving and Applying Inscribed Angle Theorems

Use $\odot M$ to answer each question. b. Name the arc intercepted by $\angle J K L$. SOLUTION $\angle J K L$ intercepts the minor arc \widehat{L}.

Example 1 Proving and Applying Inscribed Angle Theorems

Use $\odot M$ to answer each question.
c. If $\mathrm{m} \angle J M L=52^{\circ}$, find $\mathrm{m} \angle J K L$.

SOLUTION
$\angle J M L$ is a central angle, so $\mathrm{m} \angle J M L=\mathrm{m} \widehat{J L}$. By
Theorem 47-1, the measure of inscribed angle $\angle J K L$ is half the measure of $\widehat{J L}$.

$$
\begin{gathered}
m \angle J K L=\frac{1}{2}\left(52^{\circ}\right) \\
m \angle J K L=26^{\circ}
\end{gathered}
$$

Example 1 Proving and Applying

 Inscribed Angle Theorems d. Prove Theorem 47-2.Given: $\overline{A B}$ is a diameter of $\odot C$ Prove: $\mathrm{m} \angle A D B=90^{\circ}$

SOLUTION

Statements

1. $\overline{A B}$ is a diameter
2. $\angle A C B=180^{\circ}$
3. $m \widehat{A E B}=180^{\circ}$
4. $\mathrm{m} \angle A D B=90^{\circ}$

Reasons

1. Given
2. Protractor Postulate
3. Definition of the measure of an arc
4. Theorem 47-1

Example 2 Finding Angle Measures in Inscribed Triangles

Find the measure of $\angle 1, \angle 2$, and $\angle 3$. SOLUTION
The arc intercepted by $\angle 3$ measures 76°.
$m \angle 3=\frac{1}{2}\left(76^{\circ}\right)$
Theorem 47-1
$\mathrm{m} \angle 3=38^{\circ}$
Simplify.
Because $\angle 2$ is an inscribed angle that intercepts a semicircle, it measures 90°, by Theorem 47-2.
You can use the Triangle Angle Sum Theorem (Theorem 18-1) to find $m \angle 1$.
$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$
Triangle Angle Sum Th.
$\mathrm{m} \angle 1+90^{\circ}+38^{\circ}=180^{\circ}$
$\mathrm{m} \angle 1=52^{\circ}$

Substitute. Solve.

More than one inscribed angle can intercept the same arc. Since both of these inscribed angles measure one-half what the arc does, they have the same measure, and are congruent.

Theorem 47-3 - If two inscribed angles intercept the same arc, then they are congruent.

$$
\angle 1 \cong \angle 2
$$

Example 3 Finding Measures of Arcs and Inscribed Angles

a. Find the measures of $\angle F G H$ and of $\widehat{G J}$. SOLUTION
$\angle F G H$ is an inscribed angle with intercepted arc $\widehat{F H}$. Use Theorem 47-1.
$m \angle F G H=\left(\frac{1}{2}\right) m \widehat{F H} \quad$ Theorem 47-1
$m \angle F G H=\left(\frac{1}{2}\right) 36^{\circ} \quad$ Substitute.
$m \angle F G H=18^{\circ}$
Solve.
$\widehat{G J}$ is the intercepted arc of $\angle G H J$. Use Theorem 47-1.
$m \angle G H J=\left(\frac{1}{2}\right) m \widehat{G J}$
$48^{\circ}=\left(\frac{1}{2}\right) m \widehat{G J}$
$m \widehat{G J}=96^{\circ}$

Theorem 47-1
Substitute.
Solve.

Example 3 Finding Measures of Arcs and Inscribed Angles

b. Find the measure of $\angle X Y Z$.

SOLUTION
$\angle X Y Z \cong \angle X A Z$
$2 c+9=3 c$
$c=9$

Theorem 47-3
Substitute.
Solve.

Substituting $c=9$ into the expression for $\angle X Y Z$ yields $\mathrm{m} \angle X Y Z=27^{\circ}$.

Theorem 47-4 - If a quadrilateral is inscribed in a circle, then it has supplementary opposite angles.

$$
\begin{aligned}
& \angle M+\angle O=180^{\circ} \\
& \angle P+\angle N=180^{\circ}
\end{aligned}
$$

Example 4 Finding Angle Measures in Inscribed Quadrilaterals

Find the measure of $\angle U$. SOLUTION
By Theorem 47-4, $\angle S$ is supplementary to $\angle U$. $\mathrm{m} \angle S+\mathrm{m} \angle U=180^{\circ}$
$4 z+3 z+5=180^{\circ}$
$z=25$
Next, find the measure of $\angle U$.
$\mathrm{m} \angle U=3 z+5$
$\mathrm{m} \angle U=3(25)+5$
$\mathrm{m} \angle U=80$
The measure of $\angle U$ is 80°.

Theorem 47-4
Substitute.
Solve for z.
Given
Substitute.
Simplify.

Example 5 Application: Air Traffic Control

A circular radar screen in an air traffic control tower shows aircraft flight paths. The control tower is labeled R. One aircraft must fly from point T to the control tower, and then to its destination at point P. Find $\mathrm{m} \angle T R P$. SOLUTION
$\angle W E P \cong \angle W T P$
$\mathrm{m} \angle W E P=\mathrm{m} \angle W T P$
$\mathrm{m} \angle W E P=32^{\circ}$
$\mathrm{m} \angle W T P=32^{\circ}$
$\mathrm{m} \angle T P E=\left(\frac{1}{2}\right)(82)=41^{\circ}$
$\mathrm{m} \angle W T P+\mathrm{m} \angle T P E+\mathrm{m} \angle T R P=180^{\circ}$
$32^{\circ}+41^{\circ}+\mathrm{m} \angle T R P=180^{\circ}$
$\mathrm{m} \angle T R P=107^{\circ}$
The measure of $\angle T R P$ is 107°.

Theorem 47-3
Definition of Congruence
Given
Transitive PoE
Theorem 47-1
Triangle Angle Sum Theorem Substitution PoE
Solve

You Try!!!!!

a. Prove Theorem 47-3.

Given: Inscribed angles $\angle A D B$ and $\angle A C B$
Prove: $\angle A D B \cong \angle A C B$

You Try!!!!!

b. Find the value of y in the triangle inscribed in $\odot A$.

d.Find the measure of $\angle A$.

You Try!!!!!

e.Air Traffic Control A radar screen in an air traffic control tower shows flight paths. The control tower is labeled L.
Points M, L, and P mark the flight path of a commercial jet. Find the measure of $\angle M L P$.

Assignment

Page 311
Lesson Practice (Ask Mr. Heintz)
Page 312
Practice 1-30 (Do the starred ones first)

