Lesson 47 Circles and Inscribed Angles

Lessons 23 and 26 introduce circles. This lesson also addresses circles and introduces inscribed angles of circles. Recall that a central angle is an angle with the center of a circle as its vertex. Another kind of angle found in circles is the inscribed angle.

Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle. In the diagram, $\angle ABC$ is an inscribed angle.

Intercepted Arc – The arc formed by an inscribed angle. In the diagram, \widehat{AC} is the intercepted arc of $\angle ABC$.

Theorem 47–1 – The measure of an inscribed angle is equal to half the measure of its intercepted arc.

 $m \angle PRQ = \left(\frac{1}{2}\right) m \widehat{PQ}$

Theorem 47–2 – If an inscribed angle intercepts a semicircle, then it is a right angle. $\angle DEF$ intersects the semicircle, so $m \angle DEF = 90^{\circ}$.

Use $\odot M$ to answer each question. a. Name the inscribed angle. SOLUTION The inscribed angle is $\angle JKL$.

Use $\odot M$ to answer each question. b. Name the arc intercepted by $\angle JKL$. SOLUTION

 $\angle JKL$ intercepts the minor arc \widehat{JL} .

Use $\odot M$ to answer each question. c. If m $\angle JML = 52^\circ$, find m $\angle JKL$. SOLUTION

 $\angle JML$ is a central angle, so m $\angle JML = m \hat{JL}$. By Theorem 47–1, the measure of inscribed angle $\angle JKL$ is half the measure of \hat{JL} .

$$m \angle JKL = \frac{1}{2}(52^{\circ})$$

d. Prove Theorem 47–2. Given: \overline{AB} is a diameter of $\odot C$ Prove: m $\angle ADB = 90^{\circ}$ SOLUTION

Statements 1. \overline{AB} is a diameter 2. $\angle ACB = 180^{\circ}$ 3. $m\widehat{AEB} = 180^{\circ}$

4. $m \angle ADB = 90^{\circ}$

Reasons

- 1. Given
- 2. Protractor Postulate

3. Definition of the measure of an arc

4. Theorem 47–1

Example 2 Finding Angle Measures in Inscribed Triangles

Find the measure of $\angle 1$, $\angle 2$, and $\angle 3$. **SOLUTION** The arc intercepted by $\angle 3$ measures 76°. $m \angle 3 = \frac{1}{2}(76^{\circ})$ Theorem 47–1 $m \angle 3 = 38^{\circ}$ Simplify. Because $\angle 2$ is an inscribed angle that intercepts a semicircle, it measures 90°, by Theorem 47-2. You can use the Triangle Angle Sum Theorem (Theorem 18–1) to find m $\angle 1$. $m \ge 1 + m \ge 2 + m \ge 3 = 180^{\circ}$ Triangle Angle Sum Th. $m \ge 1 + 90^{\circ} + 38^{\circ} = 180^{\circ}$ Substitute. $m \ge 1 = 52^{\circ}$ Solve.

76

More than one inscribed angle can intercept the same arc. Since both of these inscribed angles measure one-half what the arc does, they have the same measure, and are congruent.

Theorem 47–3 – If two inscribed angles intercept the same arc, then they are congruent.

 $\angle 1 \cong \angle 2$

Example 3 Finding Measures of Arcs and Inscribed Angles

a. Find the measures of $\angle FGH$ and of \widehat{GJ} . SOLUTION

 \angle *FGH* is an inscribed angle with intercepted arc \widehat{FH} . Use Theorem 47–1.

 $m \angle FGH = \left(\frac{1}{2}\right) m\widehat{FH}$ Theorem 47-1 $m \angle FGH = \left(\frac{1}{2}\right) 36^{\circ}$ Substitute. $m \angle FGH = 18^{\circ}$ Solve. \widehat{GJ} is the intercepted arc of $\angle GHJ$. Use Theorem 47-1. $m \angle GHJ = \left(\frac{1}{2}\right) m\widehat{GJ}$ Theorem 47-1 $48^{\circ} = \left(\frac{1}{2}\right) m\widehat{GJ}$ Substitute. $m\widehat{GJ} = 96^{\circ}$ Solve.

48°

36°

Н

Example 3 Finding Measures of Arcs and Inscribed Angles

- b. Find the measure of $\angle XYZ$. SOLUTION
- Theorem 47–3 $\angle XYZ \cong \angle XAZ$ 2c + 9 = 3cSubstitute.
- c = 9

Solve.

Substituting c = 9 into the expression for $\angle XYZ$ yields m $\angle XYZ = 27^{\circ}$.

Theorem 47–4 – If a quadrilateral is inscribed in a circle, then it has supplementary opposite angles.

$\angle M + \angle O = 180^{\circ}$ $\angle P + \angle N = 180^{\circ}$

Example 4 Finding Angle Measures in Inscribed Quadrilaterals

```
Find the measure of \angle U.
SOLUTION
By Theorem 47–4, \angle S is supplementary to \angle U.
m \angle S + m \angle U = 180^{\circ}
                                              Theorem 47–4
4z + 3z + 5 = 180^{\circ}
                                              Substitute.
                                              Solve for z.
z= 25
Next, find the measure of \angle U.
m \angle U = 3z + 5
                                              Given
m \ge U = 3 (25) + 5
                                              Substitute.
m \angle U = 80
                                              Simplify.
The measure of \angle U is 80°.
                                                            Т
```


Example 5 Application: Air Traffic Control

A circular radar screen in an air traffic control tower shows aircraft flight paths. The control tower is labeled *R*. One aircraft must fly from point T to the control tower, and then to its destination at point *P*. Find $m \angle TRP$. SOLUTION $\angle WEP \cong \angle WTP$ Theorem 47–3 **Definition of Congruence** $m \angle WEP = m \angle WTP$ m∠*WEP*= 32° Given m∠*WTP*= 32° Transitive PoE $m \angle TPE = \left(\frac{1}{2}\right)(82) = 41^{\circ}$ Theorem 47–1 $m \angle WTP + m \angle TPE + m \angle TRP = 180^{\circ}$ Triangle Angle Sum Theorem $32^{\circ} + 41^{\circ} + m \angle TRP = 180^{\circ}$ Substitution PoE $m \land TRP = 107^{\circ}$ Solve The measure of $\angle TRP$ is 107°.

You Try!!!!!

a. Prove Theorem 47–3. Given: Inscribed angles $\angle ADB$ and $\angle ACB$ Prove: $\angle ADB \cong \angle ACB$

You Try!!!!!

b. Find the value of y in the triangle inscribed in $\odot A$.

c.Find the value of *x*.

d.Find the measure of $\angle A$.

You Try!!!!!

e.Air Traffic Control A radar screen in an air traffic control tower shows flight paths. The control tower is labeled *L*.

Points *M*, *L*, and *P* mark the flight path of a commercial jet. Find the measure of $\angle MLP$.

Assignment

Page 311 Lesson Practice (Ask Mr. Heintz)

Page 312 Practice 1-30 (Do the starred ones first)