Geometry Lesson 47

Objective: TSW understand circles and inscribed angles.

Lessons 23 and 26 introduce circles. This lesson also addresses circles and introduces inscribed angles of circles. Recall that a central angle is an angle with the center of a circle as its vertex. Another kind of angle found in circles is the inscribed angle.

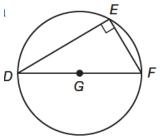
Angle - An angle whose vertex is on a circle and whose sides contain chords of the circle. In the diagram, $\angle ABC$ is an inscribed angle.

Arc - The arc formed by an inscribed angle. In the diagram, \widehat{AC} is

the intercepted arc of $\angle ABC$.

Theorem 47-1 - The measure of an inscribed angle is equal to half the measure of its intercepted arc.

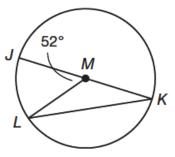
Theorem 47-2 - If an inscribed angle intercepts a semicircle, then it is a right angle. ∠DEF intersects the semicircle, so $m \angle DEF = 90^{\circ}$.


Math Reasoning

Justify A triangle is inscribed in a circle. Use Theorem 47-1 to explain why the sum of the measures of the angles in the triangle is 180°.

Example 1 Proving and Applying Inscribed Angle Theorems Use $\bigcirc M$ to answer each question.

- a. Name the inscribed angle. SOLUTION
- b. Name the arc intercepted by $\angle JKL$. SOLUTION


c. If $m \angle JML = 52^\circ$, find $m \angle JKL$. SOLUTION

Ρ

Recall that minor arcs are labeled with 2 points, and major arcs are labeled with 3 points.

Period: _____

 $(2x)^{\circ}$

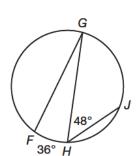
1

С

Q

Name:

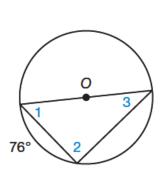
Date:

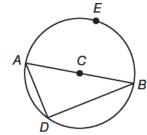

d. Prove Theorem 47-2. Given: \overline{AB} is a diameter of $\bigcirc C$ Prove: $m \angle ADB = 90^{\circ}$ SOLUTION Statements 1. 2. 3. 4.

Example 2 Finding Angle Measures in Inscribed Triangles Find the measure of $\angle 1$, $\angle 2$, and $\angle 3$. SOLUTION

More than one inscribed angle can intercept the same arc. Since both of these inscribed angles measure one-half what the arc does, they have the same measure, and are congruent.

Theorem 47-3 - If two inscribed angles intercept the same arc, then they are congruent.


Example 3 Finding Measures of Arcs and Inscribed Angles a. Find the measures of $\angle FGH$ and of \widehat{GJ} . SOLUTION



 $\frac{1}{2}D$

В

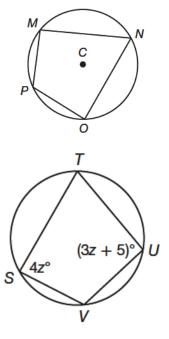
Α

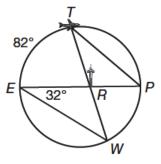


Reasons

b. Find the measure of $\angle XYZ$. SOLUTION

Theorem 47-4 - If a quadrilateral is inscribed in a circle, then it has supplementary opposite angles.


Example 4 Finding Angle Measures in Inscribed Quadrilaterals Find the measure of ∠U. SOLUTION



A circular radar screen in an air traffic control tower shows aircraft flight paths. The control tower is labeled *R*. One aircraft must fly from point *T* to the control tower, and then to its destination at point *P*. Find $m \angle TRP$.

SOLUTION

$X \xrightarrow{(2c+9)^{\circ}} Y \\ A \\ 3c^{\circ}$

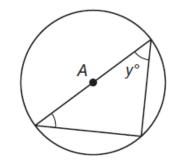
Math Reasoning

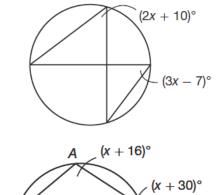
Formulate Write and solve an equation to find the sum of the measures of arcs $\widehat{EW} + \widehat{TP}$. You Try!!!!! a. Prove Theorem 47-3. Given: Inscribed angles $\angle ADB$ and $\angle ACB$ Prove: $\angle ADB \cong \angle ACB$

b. Find the value of y in the triangle inscribed in $\bigcirc A$.

c.Find the value of x.

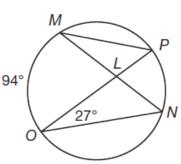
d.Find the measure of $\angle A$.


e.Air Traffic Control A radar screen in an air traffic control tower shows flight paths. The control tower is labeled *L*. Points *M*, *L*, and *P* mark the flight path of a commercial jet. Find the measure of $\angle MLP$.


В

Α

D


4

– 18)°

С

В