Geometry Lesson 50

Date: \qquad
Objective: TSW find the geometric mean.
Period: \qquad
When an altitude is drawn from the vertex of a right triangle's 90° angle to its hypotenuse, it splits the triangle into two right triangles that exhibit a useful relationship.

Theorem 50-1 - If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to each other and to the original triangle.

In $\Delta J K L$, for example, $\Delta J M K$ Is similar to $\Delta L M K$, and both $\Delta J M K$ and $\Delta L M K$ are similar to Δ \qquad .

Example 1 Proving Theorem 50-1
Given: $\overline{D C}$ is an altitude of $\triangle A B C$.
Prove: $\triangle A B C \sim \triangle C B D, \triangle A B C \sim \triangle A C D$, and $\triangle A C D \sim \triangle C B D$.

Example 2 Identifying Similar Right Triangles
Find $P S$ and $P Q$.

SOLUTION

Since $\overline{Q S}$ is a segment that is perpendicular to one side of the triangle with one endpoint on a vertex of the triangle, it is an altitude of $\triangle P Q R$. By Theorem 50-1, $\triangle P Q R \sim \triangle P S Q \sim \Delta Q S R$. Set up a proportion to solve for the missing sides.

Geometric Mean - When the means of a proportion are equal to one another. The geometric mean for positive numbers a and b, is the positive number x such that:

Math Reasoning

Write Take the cross product of the definition of the geometric mean and solve for x. What is another way to state the geometric mean of a and b, according to the formula you have found?

Example 3 Finding Geometric Mean
a. Find the geometric mean of 3 and 12 .
SOLUTION
b. Find the geometric mean of 2 and 9 to the nearest tenth.

SOLUTION

Two corollaries to Theorem 50-1 use geometric means to relate the segments formed by the altitude of a right triangle to its hypotenuse.

Corollary 50-1-1 - If the altitude is drawn to the hypotenuse of a right triangle, then the length of the altitude is the geometric mean between the segments of the hypotenuse.

Corollary 50-1-2 - If the altitude is drawn to the hypotenuse of a right triangle, then the length of a leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is closer to that leg.

Example 4 Using Geometric Mean with Right Triangles
a. Given the triangle STU, find the missing value, y.

SOLUTION

b. Given the triangle, find the missing values a and b.

SOLUTION

Example 5 Real World Application

Jayden is building a truss for a shed, shown in the diagram. Jayden needs to find the lengths of the truss brace $\overline{A Y}$, and the lengths of $\overline{X A}$ and $\overline{Z A}$.

SOLUTION

You Try!!!!
a.Name the similar triangles.
b. Find the values of x and y.

d.Find the geometric mean between 2 and 16 in simplified radical form.
f.Find the values of a and b to the nearest tenth.
g.To support an old roof, a brace must be installed at the altitude. Find the length of
 the brace to the nearest tenth of a foot.

