## Geometry Lesson 51

Date: $\qquad$
Objective: TSW use properties of isosceles and equilateral triangles.
Period: $\qquad$
In an isosceles triangle, the sides and the angles of the triangle are classified by their position in relation to the triangle's congruent sides.
$\qquad$ of an Isosceles Triangle - One of the two congruent sides of the triangle.
 In the diagram, $\overline{A B}$ and $\overline{A C}$ are the legs.

Angle of an Isosceles Triangle - The angle formed by the legs of the triangle. The vertex angle is $\angle A$.
$\qquad$ of an Isosceles Triangle - The side opposite the vertex angle. The base of $\triangle A B C$ is $\overline{B C}$.

Base $\qquad$ of an Isosceles Triangle - One of the two angles that have the base of the triangle as a side.
In $\triangle A B C, \angle B$ and $\angle C$ are base angles.

Theorem 51-1: Isosceles Triangle Theorem - If a triangle is isosceles, then its base angles are congruent. $\triangle L M N$ is isosceles. Therefore, $\angle M \cong \angle N$.

## Corollary 51-1-1 - If a triangle is equilateral, then it is equiangular.



Example 1 Proving the Isosceles Triangle Theorem
Prove the Isosceles Triangle Theorem.
Given: $\triangle A B C$ is an isosceles triangle with $\overline{A B} \cong \overline{A C}$.
$D$ is the midpoint of $\overline{B C}$.
Prove: $\angle B \cong \angle C$
SOLUTION
Statements Reasons
1.
2.
3.
4.
5.
6.
7.

Theorem 51-2: Converse of the Isosceles Triangle Theorem - If two angles of a triangle are congruent, then the sides opposite those angles are also congruent.

Corollary 51-2-1 - If a triangle is equiangular, then it is equilateral.

Example 2 Using the Isosceles Triangle Theorem and Its Converse
a. Triangle $D E F$ is isosceles, and its vertex angle is at $E$. If $\mathrm{m} \angle D=36^{\circ}$, determine $\mathrm{m} \angle E$ and $\mathrm{m} \angle F$. SOLUTION
b. The perimeter of $\Delta G H J$ is 12 inches, and $\angle G \cong \angle H$. If $G H=5$ inches, find $G J$.

SOLUTION

Example 3 Using Relationships in Equilateral Triangles
A triangle is equiangular and has a perimeter of 22.5 centimeters. Determine the length of each side.
SOLUTION

Theorem 51-3 - If a line bisects the vertex angle of an isosceles triangle, then it is the perpendicular bisector of the base.

Theorem 51-4 - If a line is the perpendicular bisector of the base of an isosceles triangle, then it bisects the vertex angle.

The diagram illustrates both of these theorems. The altitude $\overline{T U}$ bisects the vertex angle and is a perpendicular bisector of the base of the triangle.


Example 4 Proving Theorems 51-3 and 51-4
a. Prove Theorem 51-3.

Given: $\triangle A B C$ is isosceles, $\overline{A D}$ bisects $\angle A$
Prove: $\overline{A D}$ is the perpendicular bisector of $\overline{B C}$

SOLUTION

Statements
Reasons
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
b. Write a paragraph proof of Theorem 51-4.

Given: $\triangle A B C$ is isosceles, $\overline{A D}$ is the perpendicular bisector of $\overline{B C}$
Prove: $\overline{A D}$ bisects $\angle A$
SOLUTION

Example 5 Application: Infrastructure
This figure shows the north and east view of a telephone pole that is secured by four cables of equal length.
a. Explain why the base angles, $\angle P A Q$ and $\angle P R Q$, are congruent.

SOLUTION
.
.
.
.
.
.
1
.

SUTION
solution

b. Prove that these angles are also congruent to the base angles $\angle B$ and $\angle D$.

## You Try!!!!

a.For the isosceles triangle shown, determine the missing angle measures.

b. The perimeter of $\triangle X Y Z$ is 15.2 centimeters, and $\angle X \cong \angle Z$. If $X Y=6.3$ centimeters, determine $X Z$.
c. If the vertex angle of an isosceles triangle measures $20^{\circ}$, what are the measures of each of its base angles?
d. A triangle is equiangular and its perimeter is 7 feet. Determine the length of each side.
e.Engineering: This diagram shows the side-view profile of a bridge. Determine the angle that each half of the bridge makes with the horizontal.


