Lesson 55

Triangle Midsegment Theorem

Midsegment of a Triangle - A segment that joins the midpoints of two sides of the triangle. Every triangle has three midsegments.

The midsegment is always half the length of the side that does not have a midsegment endpoint on it.

Theorem 55-1: Triangle Midsegment Theorem - The segment joining the midpoints of two sides of a triangle is parallel to, and half the length of, the third side.
$\overline{R Q} \| \overline{P M}$ and $R Q=\frac{1}{2} P M$

Example 1 Using the Triangle Midsegment Theorem

In the diagram, $\overline{D E}$ is a midsegment of $\triangle A B C$.
Find the values of x and y.
SOLUTION
From the Triangle Midsegment Theorem,
$D E=\frac{1}{2} A C$, so $A C=2 D E$.
$A C=2(7)$
Therefore, $x=14$.

From the definition of a midsegment, $A D=D B$. So, $y=5$.

Example 2 Proving the Triangle Midsegment Theorem

Given: D is the midpoint of $\overline{A B}$ and E is the midpoint of $\overline{A C}$. Prove: $\overline{D E} \| \overline{B C}$ and $D E=\frac{1}{2} B C$ SOLUTION

Statements

1. D is the midpoint of $\overline{A B} ; E$ is the midpoint of $\overline{A C}$

2. $A D=D B ; A E=E C$
3. $A D+D B=A B ; A E+E C=A C$
4. $A D+A D=A B ; A E+A E=A C$
5. $A D=\frac{1}{2} A B$
6. $\angle A \cong \angle A$
7. $\triangle A B C \sim \triangle A D E$
8. $\angle A E D \cong \angle A C B$
9. $\overline{D E} \| \overline{B C}$
10. $D E=\frac{1}{2} B C$ and step 5
11. Definition of midpoint
12. Segment Addition Postulate
13. Substitute
14. Solve
15. Reflexive Property of Congruence
16. SAS Triangle Similarity Theorem
17. Definition of similar polygons
18. If corresponding angles are congruent, lines cut by a transversal are parallel
19. Definition of similar polygons

Theorem 55-2 - If a line is parallel to one side of a triangle and it contains the midpoint of another side, then it passes through the midpoint of the third side.
Since $\overline{U V} \| \overline{R T}$ and $\overline{R U} \cong \overline{U S}, \overline{S V} \cong \overline{V T}$.

The measure of $\overline{Q T}$ can be determined using Theorem 55-2. Since $R U=U S$ in triangle $Q R S$, then U is the midpoint of $\overline{R S}$. By Theorem 55-2, since $\overline{T U} \| \overline{Q S}$ and U is the midpoint of $\overline{R S}$, then T is the midpoint of $\overline{Q R}$. Since T is the midpoint of $\overline{Q R}$, then $Q T=T R$. The measure of $\overline{Q T}$ is 13 units.

Example 3 Identifying Midpoints of Sides of a Triangle

Triangle $M N P$ has vertices $M(-2,4), N(6,2)$, and $P(2,-1)$.
$\overline{Q R}$ is a midsegment of $\triangle M N P$.
Find the coordinates of Q and R. SOLUTION
R and Q are the midpoints of $\overline{M N}$ and $\overline{N P}$. Use the Midpoint Formula to find the coordinates of Q and R.

$$
\begin{aligned}
& Q\left(\frac{6+2}{2}, \frac{2+(-1)}{2}\right)=Q\left(4, \frac{1}{2}\right) \\
& R\left(\frac{-2+6}{2}, \frac{4+2}{2}\right)=R(2,3)
\end{aligned}
$$

The midsegment of a triangle creates two triangles that are similar by AA-Similarity. In the diagram, since $\overline{D E} \| \overline{A C}$, then $\angle B A C \cong \angle B D E$ and $\angle B E D \cong \angle B C A$. This shows that $\triangle A B C \sim \triangle D B E$.

A midsegment triangle is the triangle formed by the three midsegments of a triangle. Triangle $D E F$ is a midsegment triangle. Midsegment triangles are similar to the original triangle and to the triangles formed by each midsegment. In the figure, $\triangle A B C \sim \triangle E F D \sim \triangle A D F \sim \triangle D B E \sim \triangle F E C$.

Example 4 Applying Similarity to Midsegment Triangles

Triangle $S T U$ is the midsegment triangle of $\triangle P Q R$.
a. Show that $\triangle S T U \sim \Delta P Q R$.

SOLUTION
Since $\triangle S T U$ is the midsegment triangle of $\triangle P Q R$, by the definition of midsegment:
$S T=\frac{1}{2} P R$
$S U=\frac{1}{2} P R$
$T U=\frac{1}{2} Q P$

Therefore, $\triangle S T U \sim \triangle P Q R$ by SSS similarity.

Example 4 Applying Similarity to Midsegment Triangles

Triangle $S T U$ is the midsegment triangle of $\triangle P Q R$. b. Find $P Q$.

SOLUTION
$Q R$ is twice $S U$, and T is the midpoint of $\overline{Q R}$, so $Q T$
$=S U$.
$2 x+7=19$
$x=6$
Since S is the midpoint of $\overline{P Q}, P Q=2 P S$.
$P Q=2(4 x-3)=2[4(6)-3]=42$
The length of $\overline{P Q} P Q$ is 42 units.

Example 5 Application: Maps

A student determined that Toledo Street is the midsegment of the triangle formed by Columbus Avenue, Park Avenue, and William Street. The distance along Park Avenue between Columbus Avenue and William Street is 160 meters, and the distance along Toledo Street in the same span is 80 meters. William Street is 240 meters long. Find the distance from the corner of Columbus and William to the corner of William and Toledo (x in the diagram) to the nearest meter.
SOLUTION
Since Toledo Street is the midsegment of the triangle, it creates two similar triangles. Use the lengths of Toledo Street and Park Avenue to find the similarity ratio of 160:80. Name the shorter segment x and write a proportion.

$$
\begin{aligned}
& \frac{160}{80}=\frac{240}{x} \\
& 160 x=(80)(240) \\
& x=120 \mathrm{~m}
\end{aligned}
$$

You Try!!!!

a. $\overline{T U}$ is a midsegment of $\Delta Q R S$. Find the values of x and y.

You Try!!!!

b. Prove Theorem 55-2.

Given: $\overline{D E} \| \overline{B C}$ and D is the midpoint of $\overline{A B}$. Prove: E is the midpoint of $\overline{A C}$.

You Try!!!!

d.Find the perimeter of the midsegment triangle, $\triangle X Y Z$.

Assignment

Page 364
Lesson Practice (Ask Mr. Heintz)

Page 365
Practice 1-30 (Do the starred ones first)

