## Lesson 58

Tangents and Circles, Part 1

A tangent line lies in the same plane as a circle and intersects the circle at exactly one point. A radius of a circle drawn to a point of tangency meets the tangent line at a fixed angle.

Theorem 58-1 - If a line is tangent to a circle, then the line is perpendicular to a radius drawn to the point of tangency.

$$
\overleftrightarrow{E F} \perp \overleftrightarrow{D G}
$$



## Example 1 Tangent Lines and Angle Measures

Line $n$ is tangent to $\odot \mathrm{C}$ at point $P$, and line $m$ passes through $C$.
Lines $n$ and $m$ intersect at point $Q$.
$a$. Sketch $\odot C$ and lines $n$ and $m$. Mark $C, P$, and
$Q$ on your sketch.
SOLUTION


## Example 1 Tangent Lines and Angle Measures

b. If $\mathrm{m} \angle C Q P=36^{\circ}$, determine $\mathrm{m} \angle P C Q$. SOLUTION
By Theorem 58-1, $\overline{C P}$ is perpendicular to $n$, so $\triangle \mathrm{CPQ}$ is a right triangle.
Therefore, $\angle C Q P$ and $\angle P C Q$ are complementary. $\mathrm{m} \angle C Q \mathrm{P}+\mathrm{m} \angle P C Q=90^{\circ}$ $36^{\circ}+\mathrm{m} \angle P C Q=90^{\circ}$ $\mathrm{m} \angle P C Q=54^{\circ}$


Theorem 58-2 - If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle. $\overleftrightarrow{\boldsymbol{S T}}$ is tangent to $\odot V$


Theorem 58-2 is the converse of Theorem 581. Together, they can be used to show that this biconditional statement is true:

A line in the plane of a circle is tangent to the circle if and only if it is perpendicular to a radius drawn to the point of tangency.

## Example 2 Identifying Tangent

## Lines

If $\mathrm{m} \angle B E A=45^{\circ}$, show that $\overleftrightarrow{B D}$ is tangent to $\odot \mathrm{C}$. SOLUTION
To show that $\overleftrightarrow{B D}$ is tangent to $\odot \mathrm{C}$, it has to be shown that $\angle B E C$ is a right angle.
From the diagram, $\triangle A E C$ is an isosceles right triangle, so $\angle C A E \cong \angle C E A$.
The acute angles of a right triangle are complimentary, so both $\angle C A E$ and $\angle C E A$ are $45^{\circ}$ angles.
By the Angle Addition Postulate, $\angle C E A+\angle B E A=\angle B E C$.
Substituting shows that $\angle B E C=45^{\circ}+45^{\circ}$, so $\angle B E C$ is a right angle.
Therefore, by Theorem $58-2, \overleftrightarrow{B D}$ is tangent to $\odot$ C.


## Example 3 Proving Theorem 58-2

Prove Theorem 58-2.
Given: $\overleftrightarrow{D E} \perp \overline{F D}$ and $D$ is on $\odot$.
Prove: $\overleftrightarrow{D E}$ is tangent to $\odot$. SOLUTION


We will write an indirect proof. Assume that $\overleftrightarrow{D E}$ is not tangent $\odot$ F.
Then $\overleftrightarrow{D E} \odot \mathrm{~F}$ at two points, $D$ and point $P$. Then $F D=F P$. But if $\triangle D F P$ is isosceles, and the base angles of an isosceles triangle are congruent, then $\angle D P F$ is a right angle.
That means there are two right angles from $F$ to $\overleftrightarrow{D E}$, which is a contradiction of the theorem which states that through a line and a point not on a line, there is only one perpendicular line, so the assumption was incorrect and $\overleftrightarrow{D E}$ is tangent to $\odot F$.

If two tangents to the same circle intersect, the tangent segments exhibit a special property, stated in Theorem 58-3.

Theorem 58-3 - If two tangent segments are drawn to a circle from the same exterior point, then they are congruent.

$$
\overline{M Q} \cong \overline{N Q}
$$



## Example 4 Applying Relationships of Tangents from an Exterior Point

 In this figure, $\overline{J K}$ and $\overline{J M}$ are tangent to $\odot \mathrm{L}$.Determine the perimeter of quadrilateral JKLM. What type of quadrilateral is $J K L M$ ?
SOLUTION
Since $\overline{M L}$ and $\overline{L K}$ are radii of the same circle, $K L=8$ in. By Theorem 58-3, tangents to the same circle are congruent, so $J M=17 \mathrm{in}$.
To get the perimeter, add the lengths of the four sides.
$P=J K+K L+L M+J M$
$P=17+8+8+17=50 \mathrm{in}$.
Since $J K L M$ has exactly two pairs of congruent consecutive sides, it is a kite.


## Example 5 Application: Glass

## Cutting

An ornamental window has several glass panes oriented to look like an eye. The radius of the eye's iris is 3 feet, and $D C$ is 5 feet. What are $A /$ and $A H$ ? SOLUTION
The right angles on the diagram indicate that the four segments that form the corners of the eye are tangent to the circle.
Draw in the segment $\overline{F A}$. This forms right triangles, $F A /$ and $F A H$.
The hypotenuse of the triangles are 5 feet long, and their shorter legs are each 3 feet long.


## You Try!!!!!

a.Line $a$ is tangent to $\odot \mathrm{R}$ at $D$, and line $b$ passes through $R$. Lines $a$ and $b$ intersect at $E$.
If $\mathrm{m} \angle R E D=42^{\circ}$, determine $\mathrm{m} \angle D R E$.
b. Let $\overline{C A}$ be a radius of $\odot$. Let line $m$ be tangent to $\odot C$ at $A$. Let $B$ be an exterior point of $\odot \mathrm{C}$, with $\mathrm{m} \angle B A C<90^{\circ}$. Is $\overleftrightarrow{A B}$ a tangent to $\odot \mathrm{C}$ ? Why or why not?

## You Try!!!!!

c. Give a paragraph proof of Theorem 58-3. Hint: Draw $\overline{P A}, \overline{P B}$, and $\overline{P C}$.
Given: $\overline{A B}$ and $\overline{A C}$ are tangent to $\odot \mathrm{P}$ Prove: $\overline{A B} \cong \overline{A C}$


## You Try!!!!!

d. Circle $C$ has a 5 -inch radius. $\overline{X Z}$ and $\overline{Y Z}$ are tangents to $\odot \mathrm{C}$ and $Z$ is exterior to $\odot \mathrm{C}$. If $\angle X C Y$ is a right angle, what is the area of quadrilateral $C X Z Y$ ?
e. A decorative window is shaped like a triangle with an inscribed circle. If the triangle is an equilateral triangle, the circle has a radius of 3 feet, and $C Q$ is 6 feet, what is the perimeter of the triangle in simplified radical form?


## Assignment

Page 384
Lesson Practice (Ask Mr. Heintz)

Page 384
Practice 1-30 (Do the starred ones first)

