Lesson 58 Tangents and Circles, Part 1

A tangent line lies in the same plane as a circle and intersects the circle at exactly one point. A radius of a circle drawn to a point of tangency meets the tangent line at a fixed angle.

Theorem 58–1 – If a line is tangent to a circle, then the line is perpendicular to a radius drawn to the point of tangency.

 $\overrightarrow{EF} \perp \overrightarrow{DG}$

Example 1 Tangent Lines and Angle Measures

Line *n* is tangent to \odot C at point *P*, and line *m* passes through *C*.

Lines *n* and *m* intersect at point *Q*.

a. Sketch \odot C and lines *n* and *m*. Mark *C*, *P*, and *Q* on your sketch.

SOLUTION

Example 1 Tangent Lines and Angle Measures

- b. If $m \angle CQP = 36^{\circ}$, determine $m \angle PCQ$. SOLUTION
- By Theorem 58–1, \overline{CP} is perpendicular to *n*, so \triangle CPQ is a right triangle.
- Therefore, $\angle CQP$ and $\angle PCQ$ are complementary.

 $m \angle CQP + m \angle PCQ = 90^{\circ}$ $36^{\circ} + m \angle PCQ = 90^{\circ}$ $m \angle PCQ = 54^{\circ}$

Theorem 58–2 – If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle. \overrightarrow{ST} is tangent to $\bigcirc V$

Theorem 58–2 is the converse of Theorem 58– 1. Together, they can be used to show that this biconditional statement is true:

A line in the plane of a circle is tangent to the circle if and only if it is perpendicular to a radius drawn to the point of tangency.

Example 2 Identifying Tangent Lines

If $m \angle BEA = 45^\circ$, show that \overrightarrow{BD} is tangent to $\odot C$. SOLUTION

To show that \overrightarrow{BD} is tangent to $\odot C$, it has to be shown that $\angle BEC$ is a right angle.

From the diagram, $\triangle AEC$ is an isosceles right triangle, so $\angle CAE \cong \angle CEA$.

The acute angles of a right triangle are complimentary, so both $\angle CAE$ and $\angle CEA$ are 45° angles.

By the Angle Addition Postulate, $\angle CEA + \angle BEA = \angle BEC$. Substituting shows that $\angle BEC = 45^{\circ} + 45^{\circ}$, so $\angle BEC$ is a right angle.

Therefore, by Theorem 58–2, \overrightarrow{BD} is tangent to $\odot C$.

Example 3 Proving Theorem 58-2

Prove Theorem 58–2.

Given: $\overrightarrow{DE} \perp \overrightarrow{FD}$ and *D* is on \odot .

Prove: \overrightarrow{DE} is tangent to \odot .

SOLUTION

We will write an indirect proof. Assume that \overrightarrow{DE} is not tangent \odot F.

Then $\overrightarrow{DE} \odot F$ at two points, D and point P. Then FD = FP. But if ΔDFP is isosceles, and the base angles of an isosceles triangle are congruent, then $\angle DPF$ is a right angle.

That means there are two right angles from F to \overrightarrow{DE} , which is a contradiction of the theorem which states that through a line and a point not on a line, there is only one perpendicular line, so the assumption was incorrect and \overrightarrow{DE} is tangent to \odot F. If two tangents to the same circle intersect, the tangent segments exhibit a special property, stated in Theorem 58–3.

Theorem 58–3 – If two tangent segments are drawn to a circle from the same exterior point, then they are congruent.

Example 4 Applying Relationships of Tangents from an Exterior Point

In this figure, \overline{JK} and \overline{JM} are tangent to \odot L. Determine the perimeter of quadrilateral *JKLM*. What type of quadrilateral is *JKLM*? SOLUTION

Since \overline{ML} and \overline{LK} are radii of the same circle, KL = 8 in. By Theorem 58–3, tangents to the same circle are congruent, so JM = 17 in.

To get the perimeter, add the lengths of the four sides. P = JK + KL + LM + JM

Κ

17 in.

P = 17 + 8 + 8 + 17 = 50 in.

Since *JKLM* has exactly two pairs of congruent consecutive sides, it is a kite.

Example 5 Application: Glass Cutting

An ornamental window has several glass panes oriented to look like an eye. The radius of the eye's iris is 3 feet, and *DC* is 5 feet. What are *AI* and *AH*? SOLUTION

The right angles on the diagram indicate that the four segments that form the corners of the eye are tangent to the circle.

Draw in the segment \overline{FA} . This forms right triangles, *FAI* and *FAH*.

The hypotenuse of the triangles are 5 feet long, and their shorter legs are each 3 feet long.

By using the Pythagorean Theorem, *P* Al and AH are each 4 feet long.

You Try!!!!!

a.Line *a* is tangent to $\odot R$ at *D*, and line *b* passes through *R*. Lines *a* and *b* intersect at *E*. If $m \angle RED = 42^{\circ}$, determine $m \angle DRE$.

b. Let \overline{CA} be a radius of \odot C. Let line *m* be tangent to \odot C at *A*. Let *B* be an exterior point of \odot C, with m $\angle BAC < 90^{\circ}$. Is \overrightarrow{AB} a tangent to \odot C? Why or why not?

You Try!!!!!

c. Give a paragraph proof of Theorem 58–3. *Hint: Draw* \overline{PA} , \overline{PB} , and \overline{PC} . Given: \overline{AB} and \overline{AC} are tangent to $\odot P$ Prove: $\overline{AB} \cong \overline{AC}$

You Try!!!!!

d. Circle *C* has a 5-inch radius. \overline{XZ} and \overline{YZ} are tangents to \odot C and *Z* is exterior to \odot C. If $\angle XCY$ is a right angle, what is the area of quadrilateral *CXZY*?

e. A decorative window is shaped like a triangle with an inscribed circle. If the triangle is an equilateral triangle, the circle has a radius of 3 feet, and *CQ* is 6 feet, what is the perimeter of the triangle in simplified radical form?

Assignment

Page 384 Lesson Practice (Ask Mr. Heintz)

Page 384 Practice 1-30 (Do the starred ones first)