Geometry Lesson 58

Date: \qquad
Objective: TSW use tangents and circles (Part 1).
Period: \qquad
A tangent line lies in the same plane as a circle and intersects the circle at exactly one point. A radius of a circle drawn to a point of tangency meets the tangent line at a fixed angle.

Theorem 58-1 - If a line is tangent to a circle, then the line is perpendicular to a radius drawn to the point of tangency.

Example 1 Tangent Lines and Angle Measures
Line n is tangent to $\odot C$ at point P, and line m passes through C.

Lines n and m intersect at point Q.
a. Sketch $\odot C$ and lines n and m. Mark C, P, and Q on your sketch.

SOLUTION
b. If $\mathrm{m} \angle C Q P=36^{\circ}$, determine $\mathrm{m} \angle P C Q$.

SOLUTION

Theorem 58-2 - If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle.

Theorem 58-2 is the converse of Theorem 58-1. Together, they can be used to show that this
 biconditional statement is true:
A line in the plane of a circle is tangent to the circle if and only if it is perpendicular to a radius drawn to the point of tangency.

Example 2 Identifying Tangent Lines
If $\mathrm{m} \angle B E A=45^{\circ}$, show that $\overleftrightarrow{B D}$ is tangent to $\odot \mathrm{C}$.
SOLUTION

Example 3 Proving Theorem 58-2
Prove Theorem 58-2.
Given: $\overleftrightarrow{D E} \perp \overrightarrow{F D}$ and D is on \odot.
Prove: $\overleftrightarrow{D E}$ is tangent to \odot.
SOLUTION

If two tangents to the same circle intersect, the tangent segments exhibit a special property, stated in Theorem 58-3.

Theorem 58-3 - If two tangent segments are drawn to a circle from the same exterior point, then they are congruent.

Example 4 Applying Relationships of Tangents from an Exterior Point In this figure, $\overline{J K}$ and $\overline{J M}$ are tangent to $\odot \mathrm{L}$.
Determine the perimeter of quadrilateral $J K L M$. What type of quadrilateral is $J K L M$? SOLUTION

Example 5 Application: Glass Cutting
An ornamental window has several glass panes oriented to look like an eye. The radius of the eye's iris is 3 feet, and $D C$ is 5 feet. What are $A I$ and $A H$?

SOLUTION

You Try!!!!!

a.Line a is tangent to $\odot R$ at D, and line b passes through R. Lines a and b intersect at E. If $\mathrm{m} \angle R E D=42^{\circ}$, determine $\mathrm{m} \angle D R E$.
b. Let $\overline{C A}$ be a radius of $\odot C$. Let line m be tangent to $\odot C$ at A. Let B be an exterior point of $\odot C$, with $m \angle B A C<90^{\circ}$. Is $\overleftrightarrow{A B}$ a tangent to $\odot C$? Why or why not?
c. Give a paragraph proof of Theorem 58-3. Hint: $\operatorname{Draw} \overline{P A}, \overline{P B}$, and $\overline{P C}$.
Given: $\overline{A B}$ and $\overline{A C}$ are tangent to $\odot P$
Prove: $\overline{A B} \cong \overline{A C}$

d. Circle \mathbf{C} has a 5-inch radius. $\overline{X Z}$ and $\overline{Y Z}$ are tangents to $\odot \mathrm{C}$ and Z is exterior to $\odot \mathrm{C}$.

If $\angle X C Y$ is a right angle, what is the area of quadrilateral $C X Z Y$?
e. A decorative window is shaped like a triangle with an inscribed circle. If the triangle is an equilateral triangle, the circle has a radius of 3 feet, and CQ is 6 feet, what is the perimeter of the triangle in simplified radical form?

