Geometry Lesson 58

Objective: TSW use tangents and circles (Part 1).

A tangent line lies in the same plane as a circle and intersects the circle at exactly one point. A radius of a circle drawn to a point of tangency meets the tangent line at a fixed angle.

Theorem 58-1 - If a line is tangent to a circle, then the line is perpendicular to a radius drawn to the point of tangency.

Example 1 Tangent Lines and Angle Measures Line *n* is tangent to \bigcirc C at point *P*, and line *m* passes through *C*. Lines *n* and *m* intersect at point *Q*. a. Sketch \bigcirc C and lines *n* and *m*. Mark *C*, *P*, and *Q* on your sketch. SOLUTION

b. If m∠ <i>CQP</i> = 36°,	determine m∠PCQ
SOLUTION	

Theorem 58-2 - If a line in the plane of a circle is perpendicular to a radius at its endpoint on the circle, then the line is tangent to the circle.

Theorem 58-2 is the converse of Theorem 58-1. Together, they can be used to show that this biconditional statement is true:

A line in the plane of a circle is tangent to the circle if and only if it is perpendicular to a radius drawn to the point of tangency.

Example 2 Identifying Tangent Lines If m $\angle BEA = 45^\circ$, show that \overleftarrow{BD} is tangent to \bigcirc C. SOLUTION

G radius tangent D

1

Period:

Name: _____

Date: _____

Example 3 Proving Theorem 58-2 Prove Theorem 58-2. Given: $\overrightarrow{DE} \perp \overrightarrow{FD}$ and D is on \bigcirc . Prove: \overrightarrow{DE} is tangent to \bigcirc . SOLUTION

If two tangents to the same circle intersect, the tangent segments exhibit a special property, stated in Theorem 58-3.

Theorem 58-3 - If two tangent segments are drawn to a circle from the same exterior point, then they are congruent.

Example 4 Applying Relationships of Tangents from an Exterior Point
In this figure, JK and JM are tangent to ⊙L.
Determine the perimeter of quadrilateral JKLM. What type of quadrilateral is JKLM ?
SOLUTION

Example 5 Application: Glass Cutting An ornamental window has several glass panes oriented to look like an eye. The radius of the eye's iris is 3 feet, and *DC* is 5 feet. What are *AI* and *AH* ? SOLUTION

You Try!!!!!

a.Line *a* is tangent to \bigcirc R at *D*, and line *b* passes through *R*. Lines *a* and *b* intersect at *E*. If m \angle *RED* = 42°, determine m \angle *DRE*.

b. Let \overline{CA} be a radius of \bigcirc C. Let line *m* be tangent to \bigcirc C at *A*. Let *B* be an exterior point of \bigcirc C, with m∠BAC < 90°. Is \overrightarrow{AB} a tangent to \bigcirc C? Why or why not?

c. Give a paragraph proof of Theorem 58-3. *Hint: Draw* \overline{PA} , \overline{PB} , and \overline{PC} . Given: \overline{AB} and \overline{AC} are tangent to $\bigcirc P$ Prove: $\overline{AB} \cong \overline{AC}$

d. Circle *C* has a 5-inch radius. \overline{XZ} and \overline{YZ} are tangents to \bigcirc C and *Z* is exterior to \bigcirc C. If $\angle XCY$ is a right angle, what is the area of quadrilateral *CXZY*?

e. A decorative window is shaped like a triangle with an inscribed circle. If the triangle is an equilateral triangle, the circle has a radius of 3 feet, and *CQ* is 6 feet, what is the perimeter of the triangle in simplified radical form?

