Lesson 60 Proportionality Theorems

Previous lessons have discussed some of the proportional relationships that exist within triangles when they are divided by a midsegment. A similar relationship exists for any line that intersects two sides of a triangle and is parallel to one side.

Theorem 60–1: Triangle Proportionality Theorem – If a line parallel to one side of a triangle intersects the other two sides, it divides those sides proportionally.

 $\frac{XA}{AY} = \frac{XB}{BZ}$

Example 1 Using Triangle Proportionality to Find Unknowns

a. Find the length of \overline{AE} . SOLUTION

$\frac{AE}{EC} = \frac{AD}{DB}$	Triangle Proportionality Theorem
$\frac{AE}{5} = \frac{2}{3}$	Substitute.
$AE = \frac{10}{3}$	Simplify.

Example 1 Using Triangle Proportionality to Find Unknowns

b. Find the value of *x*. SOLUTION

Write a proportion relating the segments based on the Triangle Proportionality Theorem.

 $\frac{x+1}{5} = \frac{x+3}{10}$ Triangle Proportionality Theorem 10(x + 1) = 5(x + 3) Cross multiply. x = 1 Solve.

The Converse of the Triangle Proportionality Theorem is true, and can be used to check whether a line that intersects 2 sides of a triangle is parallel to the triangle's base.

Theorem 60–2: Converse of the Triangle Proportionality Theorem – If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

In $\triangle XYZ$, if $\frac{XA}{AY} = \frac{XB}{BZ}$, then $\overleftarrow{AB} \parallel \overline{YZ}$.

Example 2 Proving Lines Parallel

- Is \overline{ST} parallel to \overline{PR} ? SOLUTION
- If \overline{ST} divides \overline{PQ} and \overline{RQ} proportionally, then $\overline{ST} \parallel \overline{PR}$ by Theorem 60–2. Set up a proportion.
- $\frac{PS}{SQ} = \frac{RT}{TQ}$ Triangle Proportionality Theorem
- $\frac{3}{8} = \frac{2}{7}$ Substitute.
- 21 = 16 Cross multiply.

The statement is false, so \overline{ST} is not parallel to \overline{PR} .

The Triangle Proportionality Theorem is closely related to Theorem 60–3, which uses the same proportional relationship to relate the segments of transversals that are intersected by parallel lines.

Theorem 60–3 – If parallel lines intersect transversals, then they divide the transversals proportionally.

$$\frac{AC}{CE} = \frac{BD}{DF}$$

If parallel lines divide a transversal into congruent segments, then the segments are in a 1:1 ratio. By Theorem 60–3, any other transversal cut by the same parallel lines will be divided into segments that also have a 1:1 ratio, so they will also be congruent.

Theorem 60–4 – If parallel lines cut congruent segments on one transversal, then they cut congruent segments on all transversals. In the diagram, if UV = VW, then XY = YZ.

Example 3 Proving Theorem 60-4

Use a paragraph proof to prove Theorem 60–4. Given: $\overline{AB} \cong \overline{BC}$, $\overline{AD} \parallel \overline{BE}$, $\overline{BE} \parallel \overline{CF}$ Prove: $\overline{DE} \cong \overline{EF}$ SOLUTION By Theorem 60–3, we know that $\frac{AB}{BC} = \frac{DE}{EF}$. Since $\overline{AB} \cong \overline{BC}$, the ratio of AB to BC by substitution is the same as AB:AB, which is equal to 1. Substitute into the proportion given and obtain $1 = \frac{DE}{EF}$. Taking the cross product yields DE = EF. By the definition of congruent segments, $\overline{DE} \cong \overline{EF}$.

Example 4 Finding Segment Lengths with Intersecting Transversals

a. Find the length of segment \overline{AB} . **SOLUTION** The parallel lines cut \overline{DF} into congruent segments. Therefore, \overline{AC} is also cut into congruent segments. 3x - 1 = x + 32x = 4x = 2Substitute this value into the equation that gives AB. AB = x + 3AB = 2 + 3x + 3

Example 4 Finding Segment Lengths with Intersecting Transversals

b. Determine whether \overline{UV} , \overline{WX} , and \overline{YX} are parallel when x = 3. SOLUTION Because VX = XZ, \overline{UW} must equal \overline{WY} . UW = 4x - 1= 4(3) - 1= 11WY = 5x - 35x - 314 = 5(3) - 3= 12 $UX \neq WY$. Therefore the lines \overline{UV} , \overline{WX} , and \overline{YZ} are not parallel.

Example 5 Application: Art

Perspective is a method artists use to make an object appear as if it is receding into the distance. If the fence posts are parallel, then what is the length of \overline{AB} if EH = 22, BC = 4, CD = 6, and FH = 18? SOLUTION

Use Theorem 60–3 to write a proportion relating the segments given.

$$\frac{EH}{FH} = \frac{AD}{BD}$$

$$\frac{22}{18} = \frac{AD}{(4+6)}$$

$$AD = 12.\overline{2}$$

Use the Segment Addition Postulate:

$$AB = AD - BC - CD$$
$$AB = 12.\overline{2} - 4 - 6$$
$$AB = 2.\overline{2}$$

You Try!!!!!

a. Find the length of \overline{EB} .

b. Find the length of \overline{PQ} .

You Try!!!!!

c. Use a paragraph proof to prove the Triangle Proportionality Theorem. Given: $\overline{DE} \parallel \overline{BC}$ Prove: $\frac{AD}{DB} = \frac{AE}{EC}$

d. Find the length of \overline{AC} .

e. Determine whether \overline{KL} , \overline{MN} , and \overline{OP} are parallel.

You Try!!!!!

f.Art: A road is drawn with perspective. Find the length of \overline{AE} if AC = 10, BF = 20, and BD = 8.

Assignment

Page 399 Lesson Practice (Ask Mr. Heintz)

Page 400 Practice 1-30 (Do the starred ones first)