Lesson 60

Proportionality Theorems

Previous lessons have discussed some of the proportional relationships that exist within triangles when they are divided by a midsegment. A similar relationship exists for any line that intersects two sides of a triangle and is parallel to one side.

Theorem 60-1: Triangle Proportionality Theorem If a line parallel to one side of a triangle intersects the other two sides, it divides those sides proportionally.

$$
\frac{X A}{A Y}=\frac{X B}{B Z}
$$

Example 1 Using Triangle Proportionality to Find Unknowns

a. Find the length of $\overline{A E}$.

SOLUTION
$\begin{array}{lr}\frac{A E}{E C}=\frac{A D}{D B} & \text { Triangle Proporti } \\ \frac{A E}{5}=\frac{2}{3} & \text { Substitute. }\end{array}$
$A E=\frac{10}{3} \quad$ Simplify.

Example 1 Using Triangle Proportionality to Find Unknowns

 b. Find the value of x.SOLUTION
Write a proportion relating the segments based on the Triangle Proportionality Theorem.
$\frac{x+1}{5}=\frac{x+3}{10}$ Triangle Proportionality Theorem
$10(x+1)=5(x+3)$ Cross multiply.
$x=1 \quad$ Solve.

The Converse of the Triangle Proportionality Theorem is true, and can be used to check whether a line that intersects 2 sides of a triangle is parallel to the triangle's base.

Theorem 60-2: Converse of the Triangle Proportionality Theorem - If a line divides two sides of a triangle proportionally, then it is parallel to the third side.
In $\triangle X Y Z$, if $\frac{X A}{A Y}=\frac{X B}{B Z}$, then $\overleftrightarrow{A B} \| \overline{Y Z}$.

Example 2 Proving Lines Parallel

Is $\overline{S T}$ parallel to $\overline{P R}$?
SOLUTION
If $\overline{S T}$ divides $\overline{P Q}$ and $\overline{R Q}$ proportionally, then
$\overline{S T} \| \overline{P R}$ by Theorem 60-2. Set up a proportion.
$\frac{P S}{S Q}=\frac{R T}{T Q}$
Triangle Proportionality Theorem
$\frac{3}{8}=\frac{2}{7}$
$21=16$
Substitute.
Cross multiply.
The statement is false, so $\overline{S T}$ is not parallel to $\overline{P R}$.

The Triangle Proportionality Theorem is closely related to Theorem 60-3, which uses the same proportional relationship to relate the segments of transversals that are intersected by parallel lines.

Theorem 60-3 - If parallel lines intersect transversals, then they divide the transversals proportionally.

$$
\frac{A C}{C E}=\frac{B D}{D F}
$$

If parallel lines divide a transversal into congruent segments, then the segments are in a 1:1 ratio. By Theorem 60-3, any other transversal cut by the same parallel lines will be divided into segments that also have a $1: 1$ ratio, so they will also be congruent.

Theorem 60-4 - If parallel lines cut congruent segments on one transversal, then they cut congruent segments on all transversals. In the diagram, if $U V=V W$, then $X Y=Y Z$.

Example 3 Proving Theorem 60-4

Use a paragraph proof to prove Theorem 60-4.
Given: $\overline{A B} \cong \overline{B C}, \overline{A D}\|\overline{B E}, \overline{B E}\| \overline{C F}$
Prove: $\overline{D E} \cong \overline{E F}$
SOLUTION
By Theorem 60-3, we know that $\frac{A B}{B C}=\frac{D E}{E F}$.
Since $\overline{A B} \cong \overline{B C}$, the ratio of $A B$ to $B C$ by substitution is the same as
$A B: A B$, which is equal to 1 .
Substitute into the proportion given and obtain $1=\frac{D E}{E F}$.
Taking the cross product yields $D E=E F$.
By the definition of congruent segments, $\overline{D E} \cong \overline{E F}$.

Example 4 Finding Segment Lengths with Intersecting Transversals

a. Find the length of segment $\overline{A B}$.

SOLUTION
The parallel lines cut $\overline{D F}$ into congruent segments.
Therefore, $\overline{A C}$ is also cut into congruent segments.
$3 x-1=x+3$
$2 x=4$
$x=2$
Substitute this value into the equation that gives $A B$.
$A B=x+3$
$A B=2+3$
$A B=5$

Example 4 Finding Segment Lengths with Intersecting Transversals

b. Determine whether $\overline{U V}, \overline{W X}$, and $\overline{Y X}$ are parallel when $x=3$.
SOLUTION
Because $V X=X Z, \overline{U W}$ must equal $\overline{W Y}$.
$U W=4 x-1$
$=4(3)-1$
$=11$
$W Y=5 x-3$
$=5(3)-3$
$=12$

$U X \neq W Y$. Therefore the lines $\overline{U V}, \overline{W X}$, and $\overline{Y Z}$ are not parallel.

Example 5 Application: Art

Perspective is a method artists use to make an object appear as if it is receding into the distance. If the fence posts are parallel, then what is the length of $\overline{A B}$ if $E H=22, B C=4, C D=6$, and $F H=18$? SOLUTION
Use Theorem 60-3 to write a proportion relating the segments given.

$$
\begin{gathered}
\frac{E H}{F H}=\frac{A D}{B D} \\
\frac{22}{18}=\frac{A D}{(4+6)} \\
A D=12 . \overline{2}
\end{gathered}
$$

Use the Segment Addition Postulate:

$$
\begin{gathered}
A B=A D-B C-C D \\
A B=12 . \overline{2}-4-6 \\
A B=2 . \overline{2}
\end{gathered}
$$

You Try!!!!!

a. Find the length of $\overline{E B}$.

b. Find the length of $\overline{P Q}$.

You Try!!!!!

c. Use a paragraph proof to prove the Triangle Proportionality Theorem.
Given: $\overline{D E} \| \overline{B C}$
Prove: $\frac{A D}{D B}=\frac{A E}{E C}$

You Try!!!!!

d. Find the length of $\overline{A C}$.

e. Determine whether $\overline{K L}, \overline{M N}$, and $\overline{O P}$ are parallel.

You Try!!!!!

f.Art: A road is drawn with perspective. Find the length of $\overline{A E}$ if $A C=10, B F=20$, and $B D$ $=8$.

Assignment

Page 399
Lesson Practice (Ask Mr. Heintz)
Page 400
Practice 1-30 (Do the starred ones first)

