Geometry Lesson 60

Date: \qquad
Objective: TSW use proportionality theorems.
Period: \qquad
Previous lessons have discussed some of the proportional relationships that exist within triangles when they are divided by a midsegment. A similar relationship exists for any line that intersects two sides of a triangle and is parallel to one side.

Theorem 60-1: Triangle Proportionality Theorem - If a line parallel to one side of a triangle intersects the other two sides, it divides those sides proportionally.

Example 1 Using Triangle Proportionality to Find Unknowns
a. Find the length of $\overline{A E}$.

SOLUTION

b. Find the value of x.

SOLUTION

The Converse of the Triangle Proportionality Theorem is true, and can be used to check whether a line that intersects 2 sides of a triangle is parallel to the triangle's base.

Theorem 60-2: Converse of the Triangle Proportionality Theorem - If a line divides two sides of a triangle proportionally, then it is parallel to the third side. In $\triangle X Y Z$, if $\frac{X A}{A Y}=\frac{X B}{B Z}$, then \qquad

Example 2 Proving Lines Parallel
Is $\overline{S T}$ parallel to $\overline{P R}$?
SOLUTION

The Triangle Proportionality Theorem is closely related to Theorem 60-3, which uses the same proportional relationship to relate the segments of transversals that are intersected by parallel lines.

Theorem 60-3 - If parallel lines intersect transversals, then they divide the transversals proportionally.

If parallel lines divide a transversal into congruent segments, then the segments are in a
 1:1 ratio. By Theorem 60-3, any other transversal cut by the same parallel lines will be divided into segments that also have a $1: 1$ ratio, so they will also be congruent.

Theorem 60-4 - If parallel lines cut congruent segments on one transversal, then they cut congruent segments on all transversals.

In the diagram, if $U V=V W$, then \qquad .

Example 3 Proving Theorem 60-4
Use a paragraph proof to prove Theorem 60-4.
Given: $\overline{A B} \cong \overline{B C}, \overline{A D}\|\overline{B E}, \overline{B E}\| \overline{C F}$
Prove: $\overline{D E} \cong \overline{E F}$
SOLUTION

Example 4 Finding Segment Lengths with Intersecting Transversals a. Find the length of segment $\overline{A B}$.

SOLUTION

b. Determine whether $\overline{U V}, \overline{W X}$, and $\overline{Y X}$ are parallel when $x=3$. SOLUTION

Example 5 Application: Art

Perspective is a method artists use to make an object appear as if it is receding into the distance. If the fence posts are parallel, then what is the length of $\overline{A B}$ if $E H=22, B C=4, C D=6$, and $F H=18$?

SOLUTION

You Try!!!!!

a. Find the length of $\overline{E B}$.

b. Find the length of $\overline{P Q}$.

c. Use a paragraph proof to prove the Triangle Proportionality Theorem. Given: $\overline{D E} \| \overline{B C}$
Prove: $\frac{A D}{D B}=\frac{A E}{E C}$

d. Find the length of $\overline{A C}$.

e. Determine whether $\overline{K L}, \overline{M N}$, and $\overline{O P}$ are parallel.

f.Art: A road is drawn with perspective. Find the length of $\overline{A E}$ if $A C=10, B F=20$, and $B D=8$.

