Lesson 64
 Angles Interior to Circles

A segment or arc is said to subtend an angle if the endpoints of the segments or arc lie on the sides of the angle. In the diagram, $\angle E D F$ is subtended by $\widehat{E F}$ or $\overline{E F}$.

Inscribed angles are one type of subtended angle. Another type of subtended angle is one formed by a tangent to the circle and a chord of the circle.

Theorem 64-1 - The measure of an angle formed by a tangent and a chord is equal to half the measure of the arc that subtends it.

$$
\begin{aligned}
& m \angle A B C=\frac{1}{2} m \widehat{B E C} \\
& m \angle C B D=\frac{1}{2} m \widehat{B C}
\end{aligned}
$$

Example 1 Finding Angle Measures with Tangents and Chords

Find the indicated measure, given that $\overline{B C}$ and $\overline{S R}$ are tangents.
a. $\mathrm{m} \angle A B C$

b. $\mathrm{m} P_{-} R$

SOLUTION

In the first example, $\angle A B C$ is subtended by $\widehat{A D B}$, so its measure will be half the measure of $\overline{A D B}$.
Since $\widehat{A D B}$ measures $188^{\circ}, \angle A B C$ measures 94°.
In the second example, $\widehat{P R}$ subtends $\angle P R S$, so $\angle P R S$ is half the measure of $\widehat{P R}$.
Since the measure of $\angle P R S$ is $30^{\circ}, \widehat{P R}$ measures twice that, or 60°.

Theorem 64-2 - The measure of an angle formed by two chords B intersecting in a circle is equal to half the sum of the intersected arcs.

$$
\begin{aligned}
& m \angle 1=\frac{1}{2}(m \widehat{A D}+m \widehat{B C}) \\
& m \angle 2=\frac{1}{2}(m \widehat{A B}+m \widehat{D C})
\end{aligned}
$$

Example 2 Proving Theorem 64-2

Given: $\overline{A D}$ and $\overline{B C}$ intersect at E.
Prove: $m \angle 1=\frac{1}{2}(m \widehat{A B}+m \widehat{C D})$
SOLUTION

Statements

1. $\overline{A D}$ and $\overline{B C}$ intersect at E.
2. Draw $\overline{B D}$
3. $\mathrm{m} \angle 1=\mathrm{m} \angle E D B+\mathrm{m} \angle E B D$
4. $m \angle E D B=\frac{1}{2} m \widehat{A B}$
$m \angle E B D=\frac{1}{2} m \widehat{C D}$
5. $m \angle 1=\frac{1}{2} m \widehat{A B}+\frac{1}{2} m \widehat{C D}$
6. $m \angle 1=\frac{1}{2}(m \widehat{A B}+m \widehat{C D})$

Reasons

1. Given
2. Two points determine a line
3. Exterior Angle Theorem
4. Inscribed Angle Theorem
5. Substitution Property of

Equality
6. Distributive Property

Example 3 Finding Angle Measures of the Intersection of Two Chords

Find x.
SOLUTION
Theorem 64-2 says that the value of x will be equal to half the sum of the two arcs that subtend it.
Apply the formula from 64-2.

$$
\begin{gathered}
x=\frac{1}{2}(m \widehat{Q R}+m \widehat{S T}) \\
x=\frac{1}{2}\left(70^{\circ}+195^{\circ}\right) \\
x=132.5^{\circ}
\end{gathered}
$$

Example 4 Application: Tiling

Albert is laying tile in his kitchen in a circular pattern as shown. He knows the $m \widehat{A B}=50^{\circ}$ and $m \widehat{C D}=86^{\circ}$. He wants to know the measure of angle 1 so he can cut the tile accordingly. SOLUTION

$$
\begin{gathered}
m \angle 1=\frac{1}{2}(m \widehat{A B}+m \widehat{C D}) \\
m \angle 1=\frac{1}{2}\left(50^{\circ}+86^{\circ}\right) \\
m \angle 1=68^{\circ}
\end{gathered}
$$

So, $m \angle 1=68^{\circ}$.

You Try!!!!!

a. Find the measure of angle x in the figure. Line m is tangent to the circle.

b. Find the measure of $\widehat{M N O}$ in the figure. Line n is tangent to the circle.

You Try!!!!!

c. Prove Theorem 64-1.

Given: Tangent $\overleftrightarrow{B C}$ and secant $\overrightarrow{B A}$.
Prove: $m \angle A B C=\frac{1}{2} m \widehat{A B}$
Hint: There are two cases you must prove: one where $\overline{A B}$ is a diameter and one where $\overline{A B}$ is not a diameter.

You Try!!!!!

d. Find the measure of angle x.

e. An artist is drawing a design for a company logo that has a capital " R " inside a large circle as shown. She first draws a baseline at the top of the R. The R is supposed to be at a 60° angle in relation to the baseline. What is the measure of the arc m, which extends leftward from the top of the R?

Assignment

Page 426
Lesson Practice (Ask Mr. Heintz)

Page 427
Practice 1-30 (Do the starred ones first)

