Geometry Lesson 64

Date: \qquad
Objective: TSW use angles on the interior of circles.
Period: \qquad
A segment or arc is said to subtend an angle if the endpoints of the segments or arc lie on the sides of the angle. In the diagram, $\angle E D F$ is subtended by $\widehat{E F}$ or $\overline{E F}$.

Inscribed angles are one type of subtended angle. Another type of subtended angle is one formed by a tangent to the circle and a chord of the circle.

Theorem 64-1 - The measure of an angle formed by a tangent and a chord is equal to half the measure of the arc that subtends it.

Example 1 Finding Angle Measures with Tangents and Chords

Find the indicated measure, given that $\overline{B C}$ and $\overline{S R}$ are tangents.
a. $\mathrm{m} \angle A B C$
b. $\mathrm{m} P _R$

SOLUTION

Theorem 64-2 - The measure of an angle formed by two chords B intersecting in a circle is equal to half the sum of the intersected arcs.

Example 2 Proving Theorem 64-2
Given: $\overline{A D}$ and $\overline{B C}$ intersect at E.
Prove: $m \angle 1=\frac{1}{2}(m \widehat{A B}+m \widehat{C D})$

SOLUTION

Statements

Reasons

1.
2.
3.
4.
5.
6.

Example 3 Finding Angle Measures of the Intersection of Two Chords Find x.
SOLUTION

Example 4 Application: Tiling
Albert is laying tile in his kitchen in a circular pattern as shown. He knows the $m \widehat{A B}=50^{\circ}$ and $m \widehat{C D}=86^{\circ}$. He wants to know the measure of angle 1 so he can cut the tile accordingly.

SOLUTION

You Try!!!!!

a. Find the measure of angle x in the figure. Line m is tangent to the circle.

b. Find the measure of $\widehat{M N O}$ in the figure. Line n is tangent to the circle.
c. Prove Theorem 64-1.

Given: Tangent $\overleftrightarrow{B C}$ and secant $\overrightarrow{B A}$.

Prove: $m \angle A B C=\frac{1}{2} m \widehat{A B}$
Hint: There are two cases you must prove: one where $\overline{A B}$ is a diameter and one where $\overline{A B}$ is not a diameter.

d. Find the measure of angle x.

e. An artist is drawing a design for a company logo that has a capital " R " inside a large circle as shown. She first draws a baseline at the top of the R. The R is supposed to be at a 60° angle in relation to the baseline. What is the measure of the arc m, which extends leftward from the top of the R ?

