Lesson 65

Distinguishing Types of Parallelograms

Lesson 61 presented several methods for determining if a quadrilateral is a parallelogram. The properties presented in this lesson make it possible to determine if a parallelogram is a rectangle, square, or rhombus. Properties of Parallelograms – If an angle in a parallelogram is a right angle then the parallelogram is a rectangle. Since $\angle B$ is a right angle, *ABCD* is a rectangle.

Properties of Parallelograms – If consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.

Since $\overline{WZ} \cong \overline{ZY}$, WXYZ is a rhombus.

Example 1 Proving Parallelograms Are Rhombuses

Is this parallelogram a rhombus if x = 11? SOLUTION

To be a rhombus, two consecutive sides must be congruent. Substitute for *x* in the expression for the length of the side.

$$3x - 4 = 30$$

$$3(11) - 4 = 29$$

Since this side is not congruent to the side that measures 30 units, the quadrilateral is not a rhombus.

Properties of Parallelograms – If the diagonals of a parallelogram are congruent then it is a rectangle.

Since $\overline{AC} \cong \overline{BD}$, *ABCD* is a rectangle.

Example 2 Proving Parallelograms are Rectangles

Is parallelogram *HIJK* a rectangle? SOLUTION

Since $\angle HLI$ and $\angle KLJ$ are vertical angles, they are congruent. Opposite sides in a parallelogram are congruent, so $\overline{HI} \cong \overline{KJ}$. By Angle–Angle–Side Triangle Congruence, $\Delta HLK \cong \Delta JLK$. By CPCTC and the definition of congruent segments, LI = LJand LH = LK.

By the Addition Property of Equality LI + LK = LJ + LK, and by substitution, LI + LK = LJ + LH.

Therefore, the two diagonals are congruent and the parallelogram is a rectangle.

Properties of Parallelograms – If the diagonals of a parallelogram are perpendicular then it is a rhombus.

Since \overline{WY} is a perpendicular to \overline{ZX} , WXYZ is a rhombus.

Example 3 Proving Parallelograms are Rhombuses

Is parallelogram *KLMN* a rhombus? SOLUTION

Use the Triangle Angle Sum Theorem in ΔKJN to determine the angle measure of $\angle KJN$.

$$50^{\circ} + 40^{\circ} + m \angle KJN = 180^{\circ}$$

 $m \angle KJN = 90^{\circ}$

Since they form a right angle, \overline{KM} and \overline{NL} are perpendicular, which means KLMN is a rhombus.

Properties of Parallelograms – If a diagonal in a parallelogram bisects opposite angles, then it is a rhombus.

Since $\angle XWY \cong \angle ZWY$ and $\angle XYW \cong \angle ZYW$, WXYZ is a rhombus.

Example 4 Proving Parallelograms are Rhombuses

Is parallelogram *PQRS* a rhombus? SOLUTION

- From the diagram, ΔPQR is an equilateral triangle, with m $\angle PRQ = 60^{\circ}$.
- Since *PQRS* is a parallelogram, the Alternate Interior Angles Theorem can be used to show that $\angle QPR \cong \angle PRS$ and $\angle PRQ \cong \angle RPS$. Therefore, \overline{PR} bisects both $\angle P$ and $\angle R$, and *PQRS* is a rhombus.

Example 5 Application: Signs

A sign maker is commissioned to make a rectangular sign. The sign needs to be a perfect rectangle. Given the measurements shown in the diagram, is the sign a rectangle? How do you know?

SOLUTION

The length of one diagonal is given. The length of the other one can be determined using the Pythagorean Theorem.

 $a^2 + b^2 = c^2$ Pythagorean Theorem $10^2 + 24^2 = c^2$ Substitute.c = 26Solve.

Since the lengths of the two diagonals are the same, they are congruent and the sign is a perfect rectangle.

You Try!!!!!

a. Is this parallelogram a rectangle?

b. Is this parallelogram a rhombus?

You Try!!!!!

c.Is this parallelogram a rectangle?

d.Is this parallelogram a rhombus?

You Try!!!!!

e.Is this parallelogram a rhombus?

f.A sign in the shape of a parallelogram has diagonals that create an equilateral triangle as shown. Is the sign a perfect rectangle? Explain how you know.

Assignment

Page 432 Lesson Practice (Ask Mr. Heintz)

Page 433 Practice 1-30 (Do the starred ones first)