Lesson 65

Distinguishing Types of Parallelograms

Lesson 61 presented several methods for determining if a quadrilateral is a parallelogram. The properties presented in this lesson make it possible to determine if a parallelogram is a rectangle, square, or rhombus.

Properties of Parallelograms - If an angle in a parallelogram is a right angle then the parallelogram is a rectangle.
Since $\angle B$ is a right angle, $A B C D$ is a rectangle.

Properties of Parallelograms - If consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.
Since $\overline{W Z} \cong \overline{Z Y}, W X Y Z$ is a rhombus.

Example 1 Proving Parallelograms Are Rhombuses

Is this parallelogram a rhombus if $x=11$? SOLUTION
To be a rhombus, two consecutive sides must be congruent. Substitute for x in the expression for the length of the side.
$3 x-4=30$
$3(11)-4=29$
Since this side is not congruent to the side that measures 30 units, the quadrilateral is not a rhombus.

Properties of Parallelograms - If the diagonals of a parallelogram are congruent then it is a rectangle.
Since $\overline{A C} \cong \overline{B D}, A B C D$ is a rectangle.

Example 2 Proving Parallelograms are Rectangles

Is parallelogram HIJK a rectangle?
SOLUTION
Since $\angle H L /$ and $\angle K L J$ are vertical angles, they are congruent. Opposite sides in a parallelogram are congruent, so $\overline{H I} \cong \overline{K J}$. By Angle-Angle-Side Triangle Congruence, $\triangle H L K \cong \Delta J L K$. By CPCTC and the definition of congruent segments, $L I=L J$ and $L H=L K$.
By the Addition Property of Equality $L I+L K=L I+L K$, and by substitution, $L I+L K=L I+L H$.
Therefore, the two diagonals are congruent and the parallelogram is a rectangle.

Properties of Parallelograms - If the diagonals of a parallelogram are perpendicular then it is a rhombus.
Since $\overline{W Y}$ is a perpendicular to $\overline{Z X}, W X Y Z$ is a rhombus.

Example 3 Proving Parallelograms are Rhombuses

Is parallelogram KLMN a rhombus? SOLUTION
Use the Triangle Angle Sum Theorem in $\Delta K J N$ to determine the angle measure of $\angle K J N$.
$50^{\circ}+40^{\circ}+\mathrm{m} \angle K J N=180^{\circ}$
$\mathrm{m} \angle K J N=90^{\circ}$
Since they form a right angle, $\overline{K M}$ and $\overline{N L}$ are perpendicular, which means KLMN is a rhombus.

Properties of Parallelograms - If a diagonal in a parallelogram bisects opposite angles, then it is a rhombus.
Since $\angle X W Y \cong \angle Z W Y$ and $\angle X Y W \cong \angle Z Y W, W X Y Z$ is a rhombus.

Example 4 Proving Parallelograms are Rhombuses

Is parallelogram PQRS a rhombus? SOLUTION
From the diagram, $\triangle P Q R$ is an equilateral triangle, with $\mathrm{m} \angle P R Q=60^{\circ}$.
Since $P Q R S$ is a parallelogram, the Alternate Interior Angles Theorem can be used to show that $\angle Q P R \cong \angle P R S$ and $\angle P R Q \cong \angle R P S$.
Therefore, $\overline{P R}$ bisects both $\angle P$ and $\angle R$, and $P Q R S$ is a rhombus.

Example 5 Application: Signs

A sign maker is commissioned to make a rectangular sign. The sign needs to be a perfect rectangle. Given the measurements shown in the diagram, is the sign a rectangle? How do you know?

SOLUTION

The length of one diagonal is given. The length of the other one can be determined using the Pythagorean Theorem.
$a^{2}+b^{2}=c^{2}$
$10^{2}+24^{2}=c^{2}$
Pythagorean Theorem
$c=26$
Substitute.
$c=26$
Solve.
Since the lengths of the two diagonals are the same, they are congruent and the sign is a perfect rectangle.

You Try!!!!!

a. Is this parallelogram a rectangle?

b. Is this parallelogram a rhombus?

You Try!!!!!

c.Is this parallelogram a rectangle?

d.Is this parallelogram a rhombus?

You Try!!!!!

e.Is this parallelogram a rhombus?

f.A sign in the shape of a parallelogram has diagonals that create an equilateral triangle as shown. Is the sign a perfect rectangle? Explain how you know.

Assignment

Page 432
Lesson Practice (Ask Mr. Heintz)

Page 433
Practice 1-30 (Do the starred ones first)

