Geometry Lesson 67

Objective: TSW understand the basics of transformations.

Date: \qquad

Period: \qquad - A change in position, size, or shape of a figure. Translations, reflections, and rotations are examples of a special class of transformation called isometries.
\qquad - The original figure in a transformation.
\qquad - The shape that results from the transformation.

An \qquad maps a figure to a congruent figure - An isometry is a transformation that does not change the size or shape of a figure. That is, the image of an isometry is congruent to its preimage. This diagram shows an isometry with preimage

The small ' marks next to T, U, and V are \qquad : a symbol used to label the image in a transformation.

An isometry is also called a congruence transformation or rigid transformation.
(Slide) - A type of transformation that shifts or slides every point of a figure the same distance in the same direction as shown with parallelogram JKLM.

\qquad (Flip) - A transformation across a line (the line of reflection) such that the line is the perpendicular bisector of each segment joining each point and its image (If a point lies on the line of reflection, the point and its image will be the same.) In this diagram, the figure has been reflected across $\overleftrightarrow{A D}$. Each point of the preimage is the same distance from $\overleftrightarrow{A D}$ as its matching point on the reflected image.

Turn) - A transformation about a point (the point or center of rotation) such that each point and its image are the same distance from that point, and angles formed by a point, its image, and the point of rotation (as the vertex) are congruent. In this diagram, $A B C D E$ has been rotated clockwise about E. Notice that $E A$ $=E A^{\prime}, E B=E B^{\prime}, E C=E C^{\prime}$, and $E D=E D^{\prime}$; notice also that $\angle A E A^{\prime}, \angle B E B^{\prime}, \angle C E C^{\prime}$, and $\angle D E D$ ' are all congruent. Since E is the point of rotation, E and E ' are the same point.

Example 1 Identifying Transformations

a. Identify the type of transformation illustrated below. SOLUTION

b. Identify the type of transformation illustrated below.
c. Identify the type of transformation illustrated below.

```
SOLUTION
```


Example 2 Performing Transformations
Perform the indicated transformations.
a. Rotate the figure about point L.

SOLUTION

b. Translate the figure as indicated.

SOLUTION

Example 3 Application: Stained Glass Design
Often stained glass designers use vertical or horizontal symmetry to reduce the time it takes to design a project. Reflect this template across the vertical line $\overleftrightarrow{A B}$ to complete the design. SOLUTION

You Try!!!!

a.Identify the type of transformation which takes $\Delta X Y Z$ to $\Delta X^{\prime} Y^{\prime} Z^{\prime}$.

b. Reflect rectangle DEFG across $\overleftrightarrow{G F}$. Label the image.

c. Rotate $\triangle P Q R$ clockwise about point Q, so that Q ' and P^{\prime} are collinear with $\overline{Q R}$.

d. This simplified blueprint shows the first two floors of the front of a new civic hall. The third floor will be a translation of the second floor so it is directly above the 2nd floor. Complete the plan by performing the translation.

