Date: _____

М

Geometry Lesson 67

Objective: TSW understand the basics of transformations.

Period:

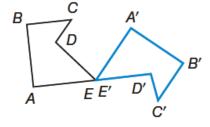
_______ - A change in position, size, or shape of a figure. Translations, reflections, and rotations are examples of a special class of transformation called isometries.

______ - The original figure in a transformation.

______ - The shape that results from the transformation.

An ______ maps a figure to a congruent figure - An isometry is a transformation that does not change the size or shape of a figure. That is, the image of an isometry is congruent to its preimage. This diagram shows an isometry with preimage

The small ' marks next to *T*, *U*, and *V* are _____: a symbol used to label the image in a transformation.

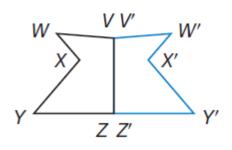

An isometry is also called a congruence transformation or rigid transformation.

______ (Slide) - A type of transformation that shifts or slides every point of a figure the same distance in the same direction as shown with parallelogram *JKLM*.

A A' C C' B' that (If a diag dist

[Flip] - A transformation across a line (the line of reflection) such that the line is the perpendicular bisector of each segment joining each point and its image (If a point lies on the line of reflection, the point and its image will be the same.) In this diagram, the figure has been reflected across \overrightarrow{AD} . Each point of the preimage is the same distance from \overrightarrow{AD} as its matching point on the reflected image.

______ (Turn) – A transformation about a point (the point or center of rotation) such that each point and its image are the same distance from that point, and angles formed by a point, its image, and the point of rotation (as the vertex) are congruent. In this diagram, *ABCDE* has been rotated clockwise about *E*. Notice that *EA* = *EA*', *EB* = *EB* ', *EC* = *EC* ', and *ED* = *ED* '; notice also that $\angle AEA$ ', $\angle BEB$ ', $\angle CEC$ ', and $\angle DED$ ' are all congruent. Since E is the point of rotation, *E* and *E* ' are the same point.

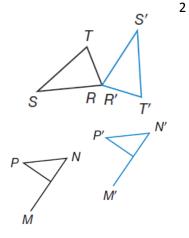

 $\triangle TUV \cong \triangle T'U'V'$

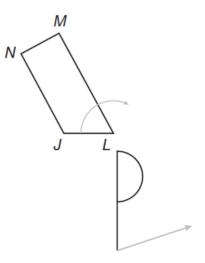
M

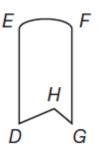
Example 1 Identifying Transformations

a. Identify the type of transformation illustrated below.

SOLUTION

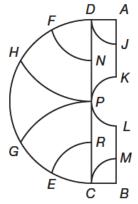

Ľ

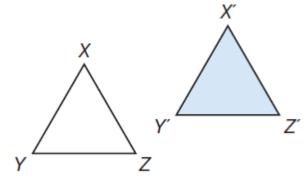

- b. Identify the type of transformation illustrated below. SOLUTION
- c. Identify the type of transformation illustrated below. SOLUTION


Example 2 Performing Transformations Perform the indicated transformations. a. Rotate the figure about point *L*. SOLUTION

b. Translate the figure as indicated. SOLUTION

c. Reflect the figure across \overleftarrow{FG} . SOLUTION

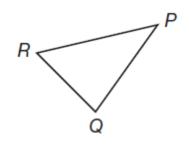


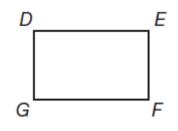

Example 3 Application: Stained Glass Design

Often stained glass designers use vertical or horizontal symmetry to reduce the time it takes to design a project. Reflect this template across the vertical line \overrightarrow{AB} to complete the design.

SOLUTION

You Try!!!! a.Identify the type of transformation which takes ΔXYZ to $\Delta X'Y'Z'$.




b. Reflect rectangle *DEFG* across \overleftarrow{GF} . Label the image.

c.Rotate ΔPQR clockwise about point Q, so that Q' and P' are collinear with \overline{QR} .

d. This simplified blueprint shows the first two floors of the front of a new civic hall. The third floor will be a translation of the second floor so it is directly above the 2nd floor. Complete the plan by performing the translation.

