Lesson 69

Properties of Trapezoids and Kites

The bases of a trapezoid are its two parallel sides. A base angle of a trapezoid is one of a pair of consecutive angles whose common side is a base of the trapezoid. Trapezoids have two pairs of base angles. The legs of a trapezoid are the two nonparallel sides.

Figure $Q R S T$ is a trapezoid.
$\overline{Q R}$ and $\overline{T S}$ are bases,
$\angle Q$ and $\angle R$ are base angles,
$\angle T$ and $\angle S$ are base angles,
And $\overline{Q T}$ and $\overline{R S}$ are legs of the trapezoid.

The midsegment of a trapezoid - The segment whose endpoints are the midpoints of the legs of the trapezoid.

Theorem 69-1: Trapezoid Midsegment Theorem The midsegment of a trapezoid is parallel to both bases and has a length that is equal to half the sum of the bases. Therefore, if $\overline{U V}$ is the midsegment of trapezoid $Q R S T$, then $\overline{U V} \| \overline{Q R}$, $\overline{U V} \| \overline{T S}$, and $U V=\frac{1}{2}(Q R+T S)$.

Example 1 Applying Properties of the Midsegment of a Trapezoid

The midsegment of trapezoid $A B C D$ is $\overline{E F}$. Find the length of $\overline{E F}$.
SOLUTION

$$
\begin{gathered}
E F=\frac{1}{2}(A B+D C) \\
E F=\frac{1}{2}(15+25) \\
E F=20
\end{gathered}
$$

The length of $\overline{E F}$ is 20 feet.

An isosceles trapezoid is a trapezoid with congruent legs. Like isosceles triangles, isosceles trapezoids have congruent base angles.

Properties of Isosceles Trapezoids - Base angles of an isosceles trapezoid are congruent. If trapezoid $H I J K$ is isosceles, then $\angle H \cong \angle I$ and $\angle J \cong \angle K$.

Example 2 Applying Properties of the Base Angles of an Isosceles Trapezoid

Find the measures of $\angle N, \angle O$, and $\angle P$ in isosceles trapezoid MNOP. SOLUTION
Because the trapezoid is isosceles, its base angles are congruent.
Therefore, $\angle M \cong \angle N$ and $\angle P \cong \angle O$.
Therefore, $\mathrm{m} \angle N=107^{\circ}$.
Notice that $\overline{M P}$ is a transversal that intersects two parallel lines. Therefore, $\angle M$ and $\angle P$ are supplementary.

$$
\begin{aligned}
& \mathrm{m} \angle P=180^{\circ}-107^{\circ} \\
& \mathrm{m} \angle P=73^{\circ} \\
& \mathrm{m} \angle O=73^{\circ}
\end{aligned}
$$

Properties of Isosceles Trapezoids - The diagonals of an isosceles trapezoid are congruent.
In isosceles trapezoid $S T U V, \overline{S U} \cong \overline{T V}$.

Example 3 Applying Properties of the Diagonals of an Isosceles Trapezoid

$A B C D$ is an isosceles trapezoid. Find the length of $\overline{C E}$ if $A C=22.3$ centimeters and $A E=8.9$ centimeters.
SOLUTION
Because $\overline{A C}$ and $\overline{B D}$ are the diagonals of an isosceles trapezoid, they are congruent.
$C E=A C-A E$
$C E=22.3-8.9$
$C E=13.4$
The length of $\overline{C E}$ is 13.4 centimeters.

Recall that kites are quadrilaterals with exactly two pairs of congruent adjacent sides.

Properties of Kites - The diagonals of a kite are perpendicular.

$$
\overline{E G} \perp \overline{F H}
$$

Example 4 Applying Properties of the Diagonals of a Kite

Find the lengths of the sides of kite $W X Y Z$. Round to the nearest tenth.
SOLUTION
Because the diagonals of a kite are perpendicular to each other, the Pythagorean Theorem can be used to find the length of each side.

$$
\begin{gathered}
W X^{2}=4^{2}+5^{2} \\
W X^{2}=44 \\
W X \approx 6.4
\end{gathered}
$$

Since $W X Y Z$, is a trapezoid, $W X$ and $W Z$ are congruent.
Therefore, $W Z$ is also approximately 6.4.

$$
\begin{gathered}
Y Z^{2}=8^{2}+5^{2} \\
Y Z^{2}=89 \\
Y Z \approx 9.4
\end{gathered}
$$

$\overline{Y Z}$ and $\overline{Y X}$ are also congruent, so $Y X$ is approximately 9.4.

Example 5 Application: Woodworking

A carpenter is making an end table with a trapezoid-shaped top. There will be three glass panels on the top of the table, as shown in the diagram. In the trapezoid $B D E G, \overline{C F}$ is a midsegment. In the trapezoid $A C F H, \overline{B G}$ is a midsegment. What are the lengths of $\overline{C F}$ and $\overline{D E}$?
SOLUTION
Since $\overline{B G}$ is a midsegment of $A C F H$, its length is half the sum of $C F$ and $A H$.

$B G$	$=\frac{1}{2}(A H+C F)$		Midsegment of a trapezoid
3.5	$=\frac{1}{2}(2+C F)$		Substitute.
$C F$	$=5$ feet		Solve.

$\overline{C F}$ is the midsegment of $B D E G$, so:
$C F=\frac{1}{2}(D E+B G)$
$5=\frac{1}{2}(D E+3.5)$
$D E=6.5$ feet

Midsegment of a trapezoid
Substitute.
Solve.

You Try!!!!

a. In the diagram, $\overline{E F}$ is the midsegment of trapezoid $A B C D$. Find the length of $\overline{C D}$.
b.Find the measures of $\angle Q, \angle \stackrel{D}{S}$, and $\angle T$ in trapezoid QRST.

You Try!!!!

c.In isosceles trapezoid $M N O P$, find the length of $\overline{M Q}$ if $N P=17.5$ yards and $P Q=9.6$ yards.

d.Find the lengths of the sides of kite $F G H J$. Round the lengths to the nearest tenth.

You Try!!!!

e. The side of a building is shaped like a trapezoid. The base of a row of windows runs along the midsegment of this trapezoid. What is the length of the building's roof?

80 m

Assignment

Page 460
Lesson Practice (Ask Mr. Heintz)

Page 461
Practice 1-30 (Do the starred ones first)

