Lesson 71
 Translations

A translation shifts every point of a figure the same distance in the same direction. A figure that is transformed by a translation remains congruent to its preimage. Its side lengths, angle measures, and other properties remain the same. Translation changes nothing but the location of a figure.

Translation - A translation is an isometry, meaning the preimage and its translated image are the same shape and size.

Example 1 Translations in One

Dimension

A square has vertices $A(1,1), B(4,1), C(4,4)$, and $D(1,4)$.
a. Find the coordinates of the vertices of the image of square $A B C D$ after a translation of 5 units to the right. Show the preimage and image on the same coordinate grid. SOLUTION
The x-coordinates of the vertices of the image of the square after it is translated 5 units to the right are 5 greater than the x-coordinates of the vertices of the preimage. The y coordinates are unchanged.

Example 1 Translations in One Dimension

A square has vertices $A(1,1), B(4,1), C(4,4)$, and $D(1,4)$.
b. Show that the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is equal to the area of $A B C D$.
SOLUTION
In $A B C D, A B=3$ and $B C=3$, so the area of the square is 9 centimeters squared.
In $A^{\prime} B^{\prime} C^{\prime} D^{\prime}, A^{\prime} B^{\prime}=3$ and $B^{\prime} C^{\prime}=3$, so the area of the square is also 9 centimeters squared.

Mapping notation is used to indicate the way in which a point or several points should be transformed. An example of translation mapping notation is given below.
$T:(x, y) \rightarrow(x+1, y-2)$
This mapping says that in a transformation, the original pair of coordinates, (x, y), will be changed into $(x+1, y-2)$. That is, the x coordinate will increase by 1 and the y coordinate will decrease by 2 .

Example 2 Translations in Two Dimensions

The vertices of a triangle are $X(-2,0), Y(-2,-$ $4)$ and $Z(1,-4)$. Find the image of $\triangle X Y Z$ after the translation $T:(x, y) \rightarrow(x+5, y+4)$. Show the preimage and image on the same coordinate grid.
SOLUTION
Graph the preimage triangle.
The translation moves every point 5 units to the right and 4 units up.
The transformation mapping is shown below.
$X(-2,0) \rightarrow X^{\prime}(3,4)$
$Y(-2,-4) \rightarrow Y^{(}(3,0)$
$Z(1,-4) \rightarrow Z^{\prime}(6,0)$
Plot X^{\prime}, Y^{\prime}, and Z^{\prime} and connect them to form $\Delta X^{\prime} Y^{\prime} Z^{\prime}$.

A translation for a polygon can also be represented using a vector. Placing the initial point of the vector on each point of the preimage will indicate the position of the point in the image.

Example 3 Showing Translations with Vectors

Find the image of $A B C D$ under the translation vector $\langle 2,3\rangle$. SOLUTION
Place the initial point of the vector on point A and draw the vector, which moves each point 2 units right and 3 units up. Drawing the vector shows that the new image point A ' will be at $(2,3)$.
Repeat this process for points B, C, and D.
The image is shown in the diagram.
B^{\prime} is at $(2,7), C^{\prime}$ is at $(6,7)$, and D^{\prime} is at $(6,3)$.

Example 4 Application: Computer Animation

A character in a new animated movie will move from the point $(4,-5)$ first to the point $(16,3)$, then to point $(13,-2)$. Find the vectors the animators need to apply to the character to make these two translations.

SOLUTION

For the first translation, the change in x-values is 12 , and the change in y-values is 8 , so the first vector is $\langle 12,8\rangle$.
For the second translation, the change in x-values is -3 , and the change in y-values is -5 , so the second vector is $\langle-3,-5\rangle$.

You Try!!!!

a. A line segment has endpoints $A(11,5)$ and $B(4$, 9). It is translated 5 units up. What are the coordinates of A 'and B ?
b.A triangle has vertices $K(2,5), L(1,11)$ and $M(5$, 7). Find the image of $\triangle K L M$ after the translation. T :
$(x, y) \rightarrow(x-2, y+1)$ Show the preimage and image on the same coordinate grid.

You Try!!!!

c.Find the coordinates of the vertices of the image of parallelogram $A B C D$ after translation by the vector $\langle 3,1\rangle$.

You Try!!!!

d.In an animated cartoon, the UFO shown will move across the screen to the right. The animator translates two points of the UFO from $(1,3)$ and $(4,3)$ to an image at $(9,4)$ and $(12$, 4). Give the component form of the vector that describes this translation.

Assignment

Page 474
Lesson Practice (Ask Mr. Heintz)

Page 474
Practice 1-30 (Do the starred ones first)

