Geometry Lesson 71

Date: \qquad
Objective: TSW understand and use translations.
Period: \qquad
A translation shifts every point of a figure the same distance in the same direction. A figure that is transformed by a translation remains congruent to its preimage. Its side lengths, angle measures, and other properties remain the same. Translation changes nothing but the location of a figure.

Translation - A translation is an isometry, meaning the preimage and its translated image are the same shape and size.

Example 1 Translations in One Dimension

A square has vertices $A(1,1), B(4,1), C(4,4)$, and $D(1,4)$.
a. Find the coordinates of the vertices of the image of square $A B C D$ after a translation of 5 units to the right. Show the preimage and image on the same coordinate grid.

SOLUTION

b. Show that the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is equal to the area of $A B C D$. SOLUTION

Mapping notation is used to indicate the way in which a point or several points should be transformed. An example of translation mapping notation is given below.

$$
T:(x, y) \rightarrow(x+1, y-2)
$$

This mapping says that in a transformation, the original pair of coordinates, (x, y), will be changed into $(x+1, y-2)$. That is, the x-coordinate will increase by 1 and the y-coordinate will decrease by 2 .

Example 2 Translations in Two Dimensions

The vertices of a triangle are $X(-2,0), Y(-2,-4)$ and $Z(1,-4)$. Find the image of $\triangle X Y Z$ after the translation $T:(x, y) \rightarrow(x+5, y+4)$. Show the preimage and image on the same coordinate grid.

SOLUTION

A translation for a polygon can also be represented using a vector. Placing the initial point of the vector on each point of the preimage will indicate the position of the point in the image.

Example 3 Showing Translations with Vectors

Find the image of $A B C D$ under the translation vector $\langle 2,3\rangle$.
SOLUTION

A character in a new animated movie will move from the point ($4,-5$) first to
 the point $(16,3)$, then to point $(13,-2)$. Find the vectors the animators need to apply to the character to make these two translations.

SOLUTION

You Try!!!!

a.A line segment has endpoints $A(11,5)$ and $B(4,9)$. It is translated 5 units up. What are the coordinates of A^{\prime} and B^{\prime} ?
b.A triangle has vertices $K(2,5), L(1,11)$ and $M(5,7)$. Find the image of $\Delta K L M$ after the translation. $T:(x, y) \rightarrow(x-2, y+1)$ Show the preimage and image on the same coordinate grid.

c. Find the coordinates of the vertices of the image of parallelogram $A B C D$ after translation by the vector $\langle 3,1\rangle$.

d.In an animated cartoon, the UFO shown will move across the screen to the right. The animator translates two points of the UFO from $(1,3)$ and $(4,3)$ to an image at $(9,4)$ and $(12,4)$. Give the component form of the vector that describes this translation.

