Lesson 72 Tangents and Circles, Part 2

Tangent – A line that intersects a circle at exactly one point.

Point of Tangency – The intersection between the circle and the tangent.

Common Tangent – A tangent to two circles. Common tangents can be internal tangents or external tangents.

Recall Theorem 58–3: If two tangent segments are drawn to a circle from the same exterior point, then they are congruent. n_{\star}

External Common Tangents

Internal Common Tangents

Example 1 Solving Problems with Common Tangents

Given that \overrightarrow{MR} and \overrightarrow{PN} are internal common tangents to $\odot A$ and $\odot B$, find the length of \overline{MQ} .

SOLUTION

Since two segments tangent to a circle from the same exterior point are congruent, $\overline{NQ} \cong \overline{RQ}$ and $\overline{MQ} \cong \overline{PQ}$. NQ = RQ Definition of congruent segments

x = 12 Substitute

Substitute the value of x into the expression for the length of \overline{MQ} .

MQ = 2x - 10 MQ = 2(12) - 10MQ = 14

Tangent circles – coplanar circles that intersect at exactly one point.

Tangent circles can be internally tangent or externally tangent. In both cases, the radii of the two circles are collinear.

Example 2 Solving Problems with Tangent Circles

In the diagram, $\odot Q$ is tangent to $\odot M$ and \overline{NP} is tangent to $\odot Q$. The radius of $\odot Q$ is 5 centimeters and the radius of $\odot M$ is 2 centimeters. Find the area of ΔQNP to the nearest square centimeter.

SOLUTION

Since the circles are tangent, they intersect at only one point, and their radii are collinear. Since \overline{QN} is composed of a radius of $\odot Q$ and a diameter of $\odot M$, its length is 9 centimeters. \overline{NP} is tangent to $\odot Q$, m $\angle QPN = 90^{\circ}$.

So ΔQNP is a right triangle with a 9-centimeter hypotenuse and one 5-centimeter leg.

Use the Pythagorean Theorem to find the length of the other leg.

$QP^2 + PN^2 = QN^2$	Pythagorean Theorem
$5^2 + PN^2 = 9^2$	Substitute.
$PN = 2\sqrt{14}$	Solve.

Now the legs of the triangle can be used to find the area.

$$A = \frac{1}{2}bh$$
$$A = \frac{1}{2}(5)(2\sqrt{14})$$
$$A \approx 18.7$$

Area

Substitute.

Simplify.

So the area of the triangle is about 19 square centimeters.

Example 3 Application: Mechanics

A car has a timing belt that consists of two pulleys and a belt, as shown in the diagram. The belt runs around the two pulleys and is tangent to both of them. The dotted segments, \overline{JI} and \overline{JK} , have been drawn into the diagram to assist in finding the distance between the two pulleys. Find *IH* and *KL*. SOLUTION

Since the pulley is tangent to the circle, and the tangent lines meet at point *J*, $\overline{JH} \cong \overline{JL}$ and $\overline{JI} \cong \overline{JK}$. Therefore, $\overline{IH} \cong \overline{KL}$ H = KL $\frac{1}{6}x + 1 = \frac{x}{2}$ x = 3

Substituting the value of *x* back into the expressions in the diagram, *IH* and *KL* both equal 1.5 feet.

You Try!!!!

a.In the diagram, \overline{RT} and \overline{QU} are tangents to the circles. Find the lengths of \overline{RS} , \overline{ST} , and \overline{SU} .

You Try!!!!

b. Determine the area of $\triangle PQR$ to the nearest square inch if $\odot P$ and $\odot Q$ are congruent tangent circles with radii of 6 inches each.

You Try!!!!

c. Pulleys: A system of pulleys is set up as shown. Find the value of *x*.

Assignment

Page 479 Lesson Practice (Ask Mr. Heintz)

Page 479 Practice 1-30 (Do the starred ones first)