Geometry Lesson 72

Date: \qquad
Objective: TSW understand and use tangents and circles.

Tangent - A line that intersects a circle at exactly one point.

Point of Tangency - The intersection between the circle and the tangent.
\qquad Tangent - A tangent to two circles. Common tangents can be internal tangents or external tangents.

External Common Tangents Internal Common Tangents

Recall Theorem 58-3: If two tangent segments are drawn to a circle from the same exterior point, then they are congruent.

Example 1 Solving Problems with Common Tangents
Given that $\overleftrightarrow{M R}$ and $\overleftrightarrow{P N}$ are internal common tangents to $\odot A$ and $\odot B$, find the length of $\overline{M Q}$.

SOLUTION

Tangent \qquad - coplanar circles that intersect at exactly one point.

Tangent circles can be internally tangent or externally tangent. In both cases, the radii of the two circles are collinear.

Example 2 Solving Problems with Tangent Circles

Externally Tangent Circles

Internally Tangent
Internally Tan
Circles In the diagram, $\odot Q$ is tangent to $\odot M$ and $\overline{N P}$ is tangent to $\odot Q$. The radius of $\odot Q$ is 5 centimeters and the radius of $\odot M$ is 2 centimeters. Find the area of $\triangle Q N P$ to the nearest square centimeter.

SOLUTION

Example 3 Application: Mechanics

A car has a timing belt that consists of two pulleys and a belt, as shown in the diagram. The belt runs around the two pulleys and is tangent to both of them. The dotted segments, $\overline{J I}$ and $\overline{J K}$, have been drawn into the diagram to assist in finding the distance between the two pulleys. Find $I H$ and $K L$.

SOLUTION

You Try!!!!

a.In the diagram, $\overline{R T}$ and $\overline{Q U}$ are tangents to the circles. Find the lengths of $\overline{R S}, \overline{S T}$, and $\overline{S U}$.
b. Determine the area of $\triangle P Q R$ to the nearest square inch if $\odot P$ and $\odot Q$ are congruent tangent circles with radii of 6 inches each.

c. Pulleys: A system of pulleys is set up as shown. Find the value of x.

