Lesson 74
 Reflections

A reflection is a transformation that reflects every point in a figure over a given line. After reflection, the image of the figure is congruent to the preimage, but has a different orientation.

Property of Reflection - A reflection is an isometry, meaning the preimage and its reflected image have the same shape and size.

To reflect a point across a horizontal or vertical line, imagine that the line is a mirror, and visualize the reflected location of the point. The figure shows a triangle reflected over the y-axis.

Example 1 Reflecting Across an

Axis

Reflect $\triangle A B C$ across the y-axis. Find the coordinates of the vertices of the reflected image and write the transformation in mapping notation.

SOLUTION

Imagine each point reflected across a mirror sitting on the y-axis. Each point will end up opposite from where it is now in Quadrant II.
The y-coordinates will not change, but the signs of the x coordinates are reversed. Each point (x, y) will be mapped to $(-x, y)$.
In mapping notation:
T: $(x, y) \rightarrow(-x, y)$.
T: $A(-7,6) \rightarrow A^{\prime}(7,6)$
T: $B(-2,3) \rightarrow B(2,3)$
$T: C(-7,1) \rightarrow C(7,1)$

Example 2 Reflecting Across a Horizontal Line

Reflect the rectangle $S T U V$ across the line $y=4$. Identify the coordinates of the vertices of the reflected image. SOLUTION
After a reflection, each point will be the same distance from the mirror as it is now.
For example, S is 4 units away from the mirror. After reflection, it will still be 4 units away, but in the opposite direction.
So it is reflected to $(-2,0)$, where it is 4 units from $y=4$. In mapping notation:
T: $(x, y) \rightarrow(x,-y+8)$.
$T: T(2,8) \rightarrow T(2,0)$
T: $U(2,6) \rightarrow U(2,2)$
T: $V(-2,6) \rightarrow V^{\prime}(-2,2)$

Notice that when a point is reflected across a horizontal line, its x-coordinate does not change. When a point is reflected across a vertical line, its y-coordinate does not change.

To find the reflection of a point across any line in the coordinate plane, draw a perpendicular line from the point to the line of reflection. The point's reflection will be equidistant from the line of reflection on both sides.

Example 3 Reflecting Across a Line

Reflect quadrilateral $J K L M$ across the line $y=x$. Identify the coordinates of the vertices of the reflected image.
SOLUTION
The perpendicular line to $y=x$ is $y=-x$.
In the second diagram, the perpendicular line from M to its reflection, M is shown.
When a point is reflected over the line $y=x$, it follows the transformation:
$T:(x, y) \rightarrow(y, x)$.
Apply this to the vertices of the quadrilateral shown.

$$
\begin{aligned}
& \text { T: } J(-3,5) \rightarrow \mathcal{(}(5,-3) \\
& \text { T: } K(0,8) \rightarrow K(8,0) \\
& \text { T: } L(3,5) \rightarrow L^{\prime}(5,3) \\
& \text { T: } M(0,1) \rightarrow M(1,0)
\end{aligned}
$$

Example 4 Application: Visual Arts

Marina is creating a work of art using part of a photograph and its reflection. In a coordinate grid, the corners of the photograph fragment are located at ($-3,2$), (2, 8), and (10, $2)$. Reflect the fragment across the line $y=2$.

SOLUTION

Points that lie on $y=2$ do not move at all, since they are on the line of reflection.
The third point $(2,8)$ is 6 units from the line of reflection. When it is reflected, it will lie 6 units from the line of reflection on its other side, at $(2,-4)$.
The transformation is: $T:(x, y) \rightarrow(x, 4-y)$. Verify that the other 2 points do not move.
$T:(-3,2) \rightarrow(-3,4-2)=(-3,2)$
$T:(10,2) \rightarrow(10,4-2)=(10,2)$

You Try!!!!

Rectangle $A B C D$ has vertices at $A(1,1), B(5.5,1), C(5.5,3.5)$, and $D(1,3.5)$. Reflect $A B C D$ as described in parts a through c. a.Reflect $A B C D$ across the y-axis.
b. Reflect $A B C D$ across the line $y=2$.
c. Reflect $A B C D$ across the line $y=x$.

You Try!!!!

d.Visual Arts: This figure shows half of an optical illusion. Complete the figure by reflecting it across the line $x=4$.

Assignment

Page 492
Lesson Practice (Ask Mr. Heintz)
Page 492
Practice 1-30 (Do the starred ones first)

