Lesson 86

Determining Chord Length

A chord is a segment whose endpoints lie on a circle. Theorem 86-1 relates the lengths of chord segments when two chords intersect.

Theorem 86-1 - If two chords intersect in a circle, then the products of the chord segments are equal. In the diagram, $(A E)(E B)=(C E)(E D)$.

Example 1 Proving Theorem 86-1

Given: Chords $\overline{T Q}$ and $\overline{R S}$ intersect at point P.
Prove: $(Q P)(P T)=(R P)(P S)$
SOLUTION
Since two points determine a line, we can draw $\overline{Q R}$ and $\overline{S T}$. Because they intersect the same arc on the circle, $\angle R Q T \cong$ <TSR.
By the Vertical Angles Theorem, $\angle Q P R \cong \angle S P T$.
Therefore, $\triangle Q P R \sim \triangle S P T$ by the AA Similarity Postulate.
The corresponding sides of these similar triangles must be proportional, so $\frac{R P}{P T}=\frac{Q P}{P S}$.
The cross product shows that $(Q P)(P T)=(R P)(P S)$.

Example 2 Finding Chord Lengths

In the circle, chords $\overline{P Q}$ and $\overline{R S}$ intersect at T. Determine $S T$. SOLUTION
Use Theorem 86-1 to write an expression relating the lengths of the chord segments. $(P T)(Q T)=(R T)(S T)$
(6)(6) $=(9) S T$
$S T=4$

Example 3 Solving for Unknowns with Intersecting Chords

In this circle, use the expressions for the segment lengths to write and solve an equation for x.
SOLUTION
$(J K)(J L)=(J M)(J M)$
$5(5-x)=(2+x)(2)$
$25-5 x=4+2 x$
$x=3$

Example 4 Application: Aviation

A "super-heavy" passenger jet has an upper passenger deck that is located $\frac{3}{4}$ of the way up the cylindrical fuselage. What percentage of the height of the fuselage is the width of the upper deck?

SOLUTION

Understand: Draw a diagram. A cross-section of the fuselage is circular, as shown.
Plan: Use Theorem 86-1 to write an equation.

$$
\begin{aligned}
\left(\frac{1}{2} w\right)\left(\frac{1}{2} w\right) & =\left(\frac{1}{4} h\right)\left(\frac{3}{4} h\right) \\
\frac{1}{4} w^{2} & =\frac{3}{16} h^{2} \\
\left(\frac{4}{1}\right) \cdot \frac{1}{4} w^{2} & =\frac{3}{16} h^{2} \cdot\left(\frac{4}{1}\right) \\
w^{2} & =\frac{3}{4} h^{2} \\
\sqrt{w^{2}} & =\sqrt{\frac{3}{4}} h^{2} \\
w & =\frac{\sqrt{3}}{2} h \\
w & \approx .87 h
\end{aligned}
$$

The width of the upper deck is approximately 0.87 , or 87% of the height of the fuselage.
Check: Look at the diagram. Does it look like the upper deck is a little shorter than, close to the same length as, the height of the fuselage? It appears to be that way, so the answer seems correct.

You Try!!!!

In $\odot G$, chords $\overline{A B}$ and $\overline{C D}$ intersect at E. Use this information for parts a and b.
a.Determine $D E$ if $A E=3, B E=16$, and $C E=9$.
b.Suppose $A E=7, B E=y, C E=4-y$, and $D E$
$=2$.
Write and solve an equation for y.

You Try!!!!

c. In the diagram, $\overline{L O}$ and $\overline{P M}$ intersect at N.

Find the value of x.

You Try!!!!

d.Civil Engineering A cylindrical natural gas pipeline is supported at two points that are 10% of the diameter of the pipeline above its lowest point. If the diameter of the pipeline is 4 feet, 9 inches, how far apart are the supports?

Assignment

Page 562
Lesson Practice (Ask Mr. Heintz)
Page 562
Practice 1-30 (Do the starred ones first)

