Geometry Lesson 86

Date: \qquad
Objective: TSW determine chord length.
Period: \qquad
A chord is a segment whose endpoints lie on a circle. Theorem 86-1 relates the lengths of chord segments when two chords intersect.

Theorem 86-1 - If two chords intersect in a circle, then the products of the chord segments are equal. In the diagram, $(A E)(E B)=(C E)(E D)$.

Example 1 Proving Theorem 86-1

Given: Chords $\overline{T Q}$ and $\overline{R S}$ intersect at point P.
Prove: $(Q P)(P T)=(R P)(P S)$
SOLUTION

Example 2 Finding Chord Lengths
In the circle, chords $\overline{P Q}$ and $\overline{R S}$ intersect at T.
Determine ST.
SOLUTION

Example 3 Solving for Unknowns with Intersecting Chords
In this circle, use the expressions for the segment lengths to write and solve an equation for x.

SOLUTION

Example 4 Application: Aviation

A "super-heavy" passenger jet has an upper passenger deck that is located $\frac{3}{4}$ of the way up the cylindrical fuselage. What percentage of the height of the fuselage is the width of the upper deck?

SOLUTION

You Try!!!!

In $\odot G$, chords $\overline{A B}$ and $\overline{C D}$ intersect at E. Use this information for parts a and b .
a. Determine $D E$ if $A E=3, B E=16$, and $C E=9$.
b. Suppose $A E=7, B E=y, C E=4-y$, and $D E=2$.

Write and solve an equation for y.
c. In the diagram, $\overline{L O}$ and $\overline{P M}$ intersect at N.

Find the value of x.

d.Civil Engineering A cylindrical natural gas pipeline is supported at two points that are 10% of the diameter of the pipeline above its lowest point. If the diameter of the pipeline is 4 feet, 9 inches, how far apart are the supports?

