Lesson 8

Using Formulas in Geometry

Formula - A mathematical relationship expressed with symbols. Some formulas have already been encountered in algebra.

Math Reasoning
Write List some other formulas used in other math classes, such as in algebra. How might these formulas be helpful in geometry?

Perimeter - The sum of the side lengths of a closed geometric figure. It is often thought of as the distance around a figure.
There is a special formula to find the perimeter of a rectangle, where P is the perimeter, l is the length of the rectangular base, and w is the width, or height, of the rectangle. $P=2 l+2 w$

Example 1. Finding Perimeter of a Figure.

a. Find the perimeter of the triangle. SOLUTION Add the lengths of the sides together.

$$
8+8+8=24
$$

The perimeter of the triangle is 24 inches.

Example 1. Finding Perimeter of a

 Figure.b. Find the perimeter of the rectangle. SOLUTION
Use the formula for the perimeter of a rectangle.
$P=2 l+2 w \quad$ Perimeter formula
$P=2(12)+2(8) \quad$ Substitute.
$P=40$ in. Simplify.
12 in.

Example 1. Finding Perimeter of a

 Figure.c. If a regular pentagon has a side length of 8 inches, what is its perimeter?
SOLUTION
There are five sides in a pentagon and each side of a regular pentagon has the same measure. Therefore, the perimeter is $5 \times 8=$ 40 inches.

Area - The size of the region bounded by the figure.
The area of a rectangle is found by the following formula, where l is the length of the figure's base and w is the length of the figure's height: $A=l w$

The area of a triangle is found by the following formula: $A=\frac{1}{2} b h$
The area of a figure is always expressed in square units.

Math Reasoning
Formulate Draw a
diagonal from one
corner of a rectangle to
the other. What shapes
does the diagonal
create? Explain how this
relates to the formula for area of a triangle.

Example 2 Using the Area Formula for a Rectangle

a. Find the area of the rectangle. SOLUTION
$A=l w$
$A=$ (14) (3)
$A=42 \mathrm{~cm}^{2}$

Area formula
Substitute.
Simplify.

3 cm
14 cm

Example 2 Using the Area Formula for a Rectangle

b. Find the length of the rectangle. SOLUTION
$A=l w$
$108=l(9)$
$12 \mathrm{in} .=l$

Area formula
Substitute.
Divide both sides by 9 .
$A=108 \mathrm{in}^{2} 9 \mathrm{in}$.

Theorem 8-1: Pythagorean Theorem - The sum of the square of the lengths of the legs, a and b, of a right triangle is equal to the square of the length of the hypotenuse c and is written $a^{2}+b^{2}=c^{2}$.

Example 3. Using the Pythagorean Theorem.

a. Find the length of the hypotenuse. SOLUTION
$a^{2}+b^{2}=c^{2}$
$12^{2}+5^{2}=c^{2}$
$144+25=c^{2}$
$\sqrt{169}=\sqrt{c^{2}}$
$13 \mathrm{~cm}=c$

Pythagorean Theorem Substitute.
Simplify.
Square root of both sides
Simplify.

Example 3. Using the Pythagorean Theorem.

b. Find the area of the triangle.

SOLUTION
Use the Pythagorean Theorem to find the length of b.
$a^{2}+b^{2}=c^{2}$
Pythagorean Theorem
$3^{2}+b^{2}=5^{2}$
$9+b^{2}=25$
Substitute.
Simplify.
$9+b^{2}-9=25-9 \quad$ Subtract 9 from both sides. 3 ft
$b^{2}=16$
$\sqrt{b^{2}}=\sqrt{16}$
$b=4 \mathrm{ft}$. Simplify.
Square root of both sides Simplify.

Then calculate the area of the triangle.
$A=\frac{1}{2} b h$
$A=\frac{1}{2}(4)(3)$
$A=6 f t^{2}$

Formula for area of a triangle

Substitute.

Simplify.

Example 4 Application: Measuring Temperature

Different countries use different units to measure the temperature. Much of the world uses degrees Celsius, but a few countries use degrees Fahrenheit. For scientists and travelers, converting between Celsius and Fahrenheit is an important skill.
To convert to Celsius from Fahrenheit, use the formula:
$C=\frac{5}{9}(F-32)$
a. If it is $77^{\circ} \mathrm{F}$, what is the temperature in degrees

Celsius?
SOLUTION
$C=\frac{5}{9}(F-32)$
Conversion formula
$C=\frac{5}{9}(77-32)$
Substitute.
Simplify.

Example 4 Application: Measuring Temperature

b. If it is $10^{\circ} \mathrm{C}$, what is the temperature in degrees Fahrenheit?
SOLUTION
$C=\frac{5}{9}(F-32) \quad$ Conversion formula $10=\frac{5}{9}(F-32) \quad$ Substitute.
$10 \cdot \frac{9}{5}=\frac{5}{9}(F-32) \cdot \frac{9}{5} \quad$ Multiply by the reciprocal
$18=F-32$
Simplify.
$18+32=F-32+32$ Add 32 to both sides
$50=F$ Simplify.

You Try!!!!

g. Use the Pythagorean Theorem to find the area of a triangle with a hypotenuse of 17 millimeters and a side length of 15 millimeters. $60 \mathrm{~mm}^{2}$
i. If it is 100° Celsius, what is the temperature in degrees Fahrenheit?

$112^{\circ} \mathrm{F}$

Assignment

Page 50
Lesson Practice a-I (Ask Mr. Heintz)

Page 44
Practice 1-30 (Do the starred ones first)

