Name: ______

Date: _____

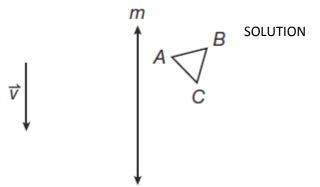
1

Geometry Lesson 90

Objective: TSW identify and use composite transformations.

Period: _____

Composite Transformation - A ______ of transformations.


If a figure is both translated 3 units to the right and rotated 90°, for example, it has undergone a composite transformation.

Composition of Two _______ - The composition of two isometries is an isometry.

Recall that translations, rotations, and reflections are all ______. A composite transformation with two or more of these transformations will also be an isometry.

A glide reflection is a composition of a translation and a reflection across a line parallel to the translation vector. Since a glide reflection combines translation and reflection, it is an isometry.

Example 1 Performing a Glide Reflection Reflect ΔABC across line *m* and then translate it along \vec{v} .

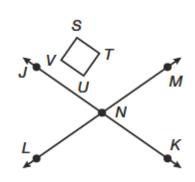
Math Reasoning

Verify In Example 1, what would be the result of performing the translation first, followed by the reflection?

→ d

Two Reflections Across Two Parallel Lines - The composition of two reflections across two parallel lines is a translation.

If a figure is reflected twice, the end result is an image that represents a translation from the original preimage. Example 2 demonstrates this.


Example 2 Translating by Composite Reflection	S S	
Reflect the line segment across <i>c</i> , and then reflect the image across <i>d</i> . In the diagram,		
$c \parallel d$.	 ←	≻ c
SOLUTION		

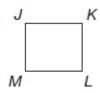
Two Reflections Across Two Intersecting Lines - The composition of two reflections across two intersecting lines is a rotation about the point of intersection. The angle of rotation is twice the angle formed by the intersecting lines.

If a figure is reflected across lines that intersect, it results in a rotation of the figure. Example 3 demonstrates this.

Example 3 Rotating by Composite Reflection

Reflect rectangle *STUV* across \overrightarrow{JK} , and then reflect the image across \overrightarrow{LM} . SOLUTION

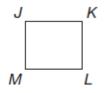
Math Reasoning


Analyze If you continue to reflect STUV clockwise across $\mathcal{I}K$ and $\mathcal{I}M$, what will the final result be?

Applying the same transformations to a figure in a different order sometimes results in a different image.

Example 4 Analyzing Order of Composition

a. Perform transformations on the rectangle in the following order: reflection across a vertical line, rotation 90° clockwise, rotation 90° clockwise, and reflection across a


horizontal line. What is the result?

SOLUTION

Math Reasoning

Analyze Write one way to perform the composition in this example in a different order and get the same final image as the one in a.

SOLUTION

b. Perform transformations on the original rectangle in part a in the following order: reflection across a vertical line, rotation 90° clockwise, reflection across a horizontal line, and rotation 90° clockwise. What is the result?

c. Compare the final images in parts a and b. What do the results indicate? SOLUTION

Exploration

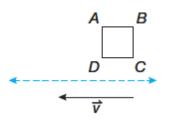
In this exploration, you will perform a composite transformation beginning with a given preimage. You will compare your final image to those of your classmates and to a final image provided by your teacher.

1. On grid paper, create ΔXYZ with X(0,0), Y(3,0), and Z(0,4).

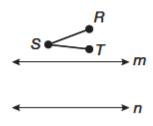
2. Follow the series of translations described by your teacher to generate an image based on composite transformations. 3. Redraw ΔXYZ on a new grid and follow a second series of translations described by your teacher to generate an image.

4. Compare your results for the two composite transformations with a classmate.

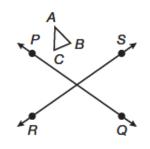
5. Check your results with the results that your teacher posts.

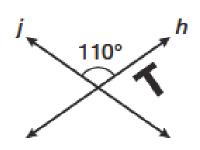

Example 5 Application: Design

To create a design, Reina draws a line segment, and reflects it twice as shown. The reflection lines are parallel and are 1 inch apart. Find the distance from A to A'. SOLUTION


s A' 1 in A'

You Try!!!!!


a. Reflect the square over the dashed line and translate it by $\vec{v}.$


b. Reflect the figure across *m*, and then reflect the image across *n*.

c. Reflect $\triangle ABC$ across \overrightarrow{PQ} , and then reflect the image across \overrightarrow{RS} .

e. To create a new logo for a sweatshirt, a designer reflects the letter *T* across line *h*. This image is then reflected across line *j*. What single transformation could move the letter *T* from its starting point to its final position?

